28 results on '"evolution algebras"'
Search Results
2. Certain particular families of graphicable algebras
- Author
-
Núñez, Juan, Rodríguez-Arévalo, María Luisa, and Villar, María Trinidad
- Published
- 2014
- Full Text
- View/download PDF
3. CONNECTING STATISTICS, PROBABILITY, ALGEBRA AND DISCRETE MATHEMATICS.
- Author
-
LÓPEZ-BLÁZQUEZ, F., NÚÑEZ-VALDÉS, J., RECACHA, S., and VILLAR-LIÑÁN, M. T.
- Subjects
DISCRETE mathematics ,ALGEBRA ,MARKOV processes ,DIRECTED graphs ,STATISTICS ,PROBABILITY theory - Abstract
In this paper, we connect four different branches of Mathematics: Statistics, Probability, Algebra and Discrete Mathematics with the objective of introducing new results on Markov chains and evolution algebras obtained by following a relatively new line of research, already dealt with by several authors. It consists of the use of certain directed graphs to facilitate the study of Markov chains and evolution algebras, as well as to use each of the three objects to make easier the study of the other two. The results obtained can be useful, in turn, to link different scientific disciplines, such as Physics, Engineering and Mathematics, in which evolution algebras are considered very interesting tools. [ABSTRACT FROM AUTHOR]
- Published
- 2024
4. The evolution operator of evolution algebras.
- Author
-
Fernández-Ternero, Desamparados, Gómez-Sousa, Víctor M., and Núñez-Valdés, Juan
- Subjects
- *
OPERATOR algebras , *ALGEBRA , *HOMOMORPHISMS - Abstract
This paper deals with the evolution operator of evolution algebras. The main goal is to obtain novel results of this operator, both in the case in which it is a derivation and when it is a homomorphism of algebras. These new results constitute a criterion for classifying evolution algebras satisfying one of these conditions. An algorithm to obtain all these degenerate evolution algebras starting from those of smaller dimensions is also constructed. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
5. Power-Associative Evolution Algebras
- Author
-
Ouattara, Moussa, Savadogo, Souleymane, Siles Molina, Mercedes, editor, El Kaoutit, Laiachi, editor, Louzari, Mohamed, editor, Ben Yakoub, L'Moufadal, editor, and Benslimane, Mohamed, editor
- Published
- 2020
- Full Text
- View/download PDF
6. Dealing with the Resolubility of Evolution Algebras.
- Author
-
Fernández-Ternero, D., Gómez-Sousa, V. M., and Núñez-Valdés, J.
- Abstract
Although since their introduction by Tian in 2004, evolution algebras have been the subject of a very deep study in the last years due to their numerous applications to other disciplines, this study is not easy since these algebras lack an identity that characterizes them, such as the identity of Jacobi, for Lie algebras or those of Leibniz and Malcev for those corresponding algebras. In this paper we deal with the concepts of solvability and nilpotency of these evolution algebras. Some novel results on them obtained from using the evolution operator of these algebras are given and some examples illustrating these results are also shown. The main result obtained states that an evolution algebra is solvable if and only if its structure matrix is nilpotent, which implies, in turn, that the solvability and the nilpotency indices of that algebra coincide provided the corresponding evolution operator is an endomorphism of the algebra. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
7. Evolution algebras whose evolution operator is a homomorphism.
- Author
-
Fernández‐Ternero, Desamparados, Gómez‐Sousa, Víctor Manuel, and Núñez‐Valdés, Juan
- Subjects
HOMOMORPHISMS ,DIMENSION theory (Algebra) ,ALGORITHMS ,RING theory ,MATHEMATIC morphism - Abstract
This article deals with the evolution operator of evolution algebras. We give a theorem that allows to characterize these algebras when this operator is a homomorphism of algebras of rank n−2 and this result in turn allows us to extend the classification of this type of algebras, given in a previous result by ourselves in 2021, up to the case of dimension 4. For this purpose, we analyze and make use of an algorithm for the degenerate case. A computational study of the procedure is also made. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
8. Mathematical tools for the future: Graph Theory and graphicable algebras
- Author
-
Núñez, Juan, Silvero, Marithania, and Villar, María Trinidad
- Published
- 2013
- Full Text
- View/download PDF
9. On evolution operators in characteristic 2.
- Author
-
Varro, Richard
- Subjects
NONASSOCIATIVE algebras ,SCALAR field theory ,ALGEBRA - Abstract
We are interested in the evolution operators defined on commutative and non-associative algebras when the characteristic of the scalar field is 2. We distinguish four types: nilpotent, quasi-constant, ultimately periodic, and plenary train operators. They are studied and classified for non-baric and for baric algebras. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
10. DUPLICATE, BERNSTEIN ALGEBRAS AND EVOLUTION ALGEBRAS.
- Author
-
CONSEIBO, A., SAVADOGO, S., and OUATTARA, M.
- Subjects
ALGEBRA ,COMMUTATIVE algebra ,CHAR - Abstract
In this paper, we firstly study a commutative algebra E over a field F of Char(F) ⵐ 2 that satisfying dim(Ꜫ ² ) = 1. We show that, such an algebra is an evolution algebra. Afterwards, we pay attention to commutative duplicate of a commutative algebra E. We find necessary and sufficient condition in which the duplicate D(E) is an evolution algebra. And, we finish by studying an evolution algebra that is a Bernstein algebra. We classify that algebras, up to isomorphism, in dimension ≤ 4. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
11. Endowing evolution algebras with properties of discrete structures.
- Author
-
González-López, Rafael and Núnez, Juan
- Subjects
ALGEBRA ,PROPERTY - Abstract
In this paper, we introduce new results on evolution algebras obtained by following a relatively new line of research on these objects. It consists of the use of certain properties of graphs to facilitate the study of evolution algebras and reciprocally. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
12. Using the Evolution Operator to Classify Evolution Algebras
- Author
-
Desamparados Fernández-Ternero, Víctor M. Gómez-Sousa, and Juan Núñez-Valdés
- Subjects
evolution algebras ,derivation ,classification ,algorithm ,applications ,Applied mathematics. Quantitative methods ,T57-57.97 ,Mathematics ,QA1-939 ,Electronic computers. Computer science ,QA75.5-76.95 - Abstract
Evolution algebras are currently widely studied due to their importance not only “per se” but also for their many applications to different scientific disciplines, such as Physics or Engineering, for instance. This paper deals with these types of algebras and their applications. A criterion for classifying those satisfying certain conditions is given and an algorithm to obtain degenerate evolution algebras starting from those of smaller dimensions is also analyzed and constructed.
- Published
- 2021
- Full Text
- View/download PDF
13. EVOLUTION TRAIN ALGEBRAS.
- Author
-
OUATTARA, MOUSSA and SAVADOGO, SOULEYMANE
- Subjects
INDECOMPOSABLE modules ,COMMUTATIVE algebra ,ALGEBRA ,BIOLOGICAL evolution ,KERNEL functions - Abstract
Through this paper, we show that the criteria for real evolution algebra to be a baric algebra can be extended to any evolution algebra over a commutative field of characteristic 6 ≠ = 2. Then we prove that an evolution algebra E is a train algebra of rank r + 1 if and only if the kernel of its weight function is nil of nil-index r > 1. We also study special train evolution algebra and characterize idempotents, power-associativity and automorphism in evolution train algebra. Finally we classify up to dimension 5, indecomposable evolution nil-algebra of nil-index 4 that are not power-associative. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
14. Dealing with the Resolubility of Evolution Algebras
- Author
-
Universidad de Sevilla. Departamento de Geometría y Topología, Fernández Ternero, Desamparados, Gómez Sousa, Víctor Manuel, Núñez Valdés, Juan, Universidad de Sevilla. Departamento de Geometría y Topología, Fernández Ternero, Desamparados, Gómez Sousa, Víctor Manuel, and Núñez Valdés, Juan
- Abstract
Although since their introduction by Tian in 2004, evolution algebras have been the subject of a very deep study in the last years due to their numerous applications to other disciplines, this study is not easy since these algebras lack an identity that characterizes them, such as the identity of Jacobi, for Lie algebras or those of Leibniz and Malcev for those corresponding algebras. In this paper we deal with the concepts of solvability and nilpotency of these evolution algebras. Some novel results on them obtained from using the evolution operator of these algebras are given and some examples illustrating these results are also shown. The main result obtained states that an evolution algebra is solvable if and only if its structure matrix is nilpotent, which implies, in turn, that the solvability and the nilpotency indices of that algebra coincide provided the corresponding evolution operator is an endomorphism of the algebra.
- Published
- 2022
15. Dealing with the Resolubility of Evolution Algebras
- Author
-
D. Fernández-Ternero, V. M. Gómez-Sousa, J. Núñez-Valdés, and Universidad de Sevilla. Departamento de Geometría y Topología
- Subjects
Computational Mathematics ,Evolution algebras ,Computational Theory and Mathematics ,Solvability ,Applied Mathematics ,Nilpotency - Abstract
Although since their introduction by Tian in 2004, evolution algebras have been the subject of a very deep study in the last years due to their numerous applications to other disciplines, this study is not easy since these algebras lack an identity that characterizes them, such as the identity of Jacobi, for Lie algebras or those of Leibniz and Malcev for those corresponding algebras. In this paper we deal with the concepts of solvability and nilpotency of these evolution algebras. Some novel results on them obtained from using the evolution operator of these algebras are given and some examples illustrating these results are also shown. The main result obtained states that an evolution algebra is solvable if and only if its structure matrix is nilpotent, which implies, in turn, that the solvability and the nilpotency indices of that algebra coincide provided the corresponding evolution operator is an endomorphism of the algebra.
- Published
- 2022
16. Using the Evolution Operator to Classify Evolution Algebras
- Author
-
Víctor M. Gómez-Sousa, Juan Núñez-Valdés, Desamparados Fernández-Ternero, Universidad de Sevilla. Departamento de Geometría y topología, and Universidad de Sevilla. FQM326: Geometría diferencial y Teoría de Lie
- Subjects
evolution algebras ,T57-57.97 ,algorithm ,Applied mathematics. Quantitative methods ,applications ,Applied Mathematics ,010102 general mathematics ,Degenerate energy levels ,General Engineering ,derivation ,010103 numerical & computational mathematics ,QA75.5-76.95 ,01 natural sciences ,Algebra ,Computational Mathematics ,Operator (computer programming) ,classification ,Electronic computers. Computer science ,ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION ,QA1-939 ,0101 mathematics ,Scientific disciplines ,Mathematics - Abstract
Evolution algebras are currently widely studied due to their importance not only “per se” but also for their many applications to different scientific disciplines, such as Physics or Engineering, for instance. This paper deals with these types of algebras and their applications. A criterion for classifying those satisfying certain conditions is given and an algorithm to obtain degenerate evolution algebras starting from those of smaller dimensions is also analyzed and constructed.
- Published
- 2021
17. A historical perspective of Tian’s evolution algebras
- Author
-
Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII), Universidad de Sevilla. Departamento de Geometría y Topología, Junta de Andalucía, Ceballos, Manuel, Falcón Ganfornina, Raúl Manuel, Núñez Valdés, Juan, Tenorio, Ángel F., Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII), Universidad de Sevilla. Departamento de Geometría y Topología, Junta de Andalucía, Ceballos, Manuel, Falcón Ganfornina, Raúl Manuel, Núñez Valdés, Juan, and Tenorio, Ángel F.
- Abstract
Even if it has been less than a decade and a half since Tian introduced his concept of evolution algebras to represent algebraically non-Mendelian rules in Genetics, their study is becoming increasingly widespread mainly due to their applications to many scientific disciplines. In order to facilitate further research on the topic, this paper deals with the past and present research on these kind of algebras, together with the most relevant topics regarding them
- Published
- 2021
18. Using the Evolution Operator to Classify Evolution Algebras
- Author
-
Universidad de Sevilla. Departamento de Geometría y topología, Universidad de Sevilla. FQM326: Geometría diferencial y Teoría de Lie, Fernández Ternero, Desamparados, Gómez Sousa, Víctor Manuel, Núñez Valdés, Juan, Universidad de Sevilla. Departamento de Geometría y topología, Universidad de Sevilla. FQM326: Geometría diferencial y Teoría de Lie, Fernández Ternero, Desamparados, Gómez Sousa, Víctor Manuel, and Núñez Valdés, Juan
- Abstract
Evolution algebras are currently widely studied due to their importance not only “per se” but also for their many applications to different scientific disciplines, such as Physics or Engineering, for instance. This paper deals with these types of algebras and their applications. A criterion for classifying those satisfying certain conditions is given and an algorithm to obtain degenerate evolution algebras starting from those of smaller dimensions is also analyzed and constructed.
- Published
- 2021
19. A historical perspective of Tian’s evolution algebras
- Author
-
Ángel F. Tenorio, Manuel Ceballos, Raúl M. Falcón, Juan Núñez-Valdés, Universidad de Sevilla. Departamento de Matemática Aplicada I (ETSII), Universidad de Sevilla. Departamento de Geometría y Topología, and Junta de Andalucía
- Subjects
Evolution algebras ,General Mathematics ,Genetic algebras ,Perspective (graphical) ,Historical perspective ,Tian ,Mathematics ,Epistemology - Abstract
Even if it has been less than a decade and a half since Tian introduced his concept of evolution algebras to represent algebraically non-Mendelian rules in Genetics, their study is becoming increasingly widespread mainly due to their applications to many scientific disciplines. In order to facilitate further research on the topic, this paper deals with the past and present research on these kind of algebras, together with the most relevant topics regarding them Junta de Andalucía FQM-016
- Published
- 2021
20. FINITELY GENERATED NIL BUT NOT NILPOTENT EVOLUTION ALGEBRAS.
- Author
-
TIAN, JIANJUN PAUL and ZOU, YI MING
- Subjects
- *
NILPOTENT groups , *EVOLUTIONARY theories , *POPULATION dynamics , *MATHEMATICAL models , *ALGEBRAIC functions , *GROUP algebras , *MATHEMATICAL analysis - Abstract
To use evolution algebras to model population dynamics that both allow extinction and introduction of certain gametes in finite generations, nilpotency must be built into the algebraic structures of these algebras with the entire algebras not to be nilpotent if the populations are assumed to evolve for a long period of time. To adequately address this need, evolution algebras over rings with nilpotent elements must be considered instead of evolution algebras over fields. This paper develops some criteria, which are computational in nature, about the nilpotency of these algebras, and shows how to construct finitely generated evolution algebras which are nil but not nilpotent. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
21. Evolution algebras generated by Gibbs measures.
- Author
-
Rozikov, U. and Tian, J.
- Abstract
In this article we study algebraic structures of function spaces defined by graphs and state spaces equipped with Gibbs measures by associating evolution algebras. We give a constructive description of associating evolution algebras to the function spaces (cell spaces) defined by graphs and state spaces and Gibbs measure µ. For finite graphs we find some evolution subalgebras and other useful properties of the algebras. We obtain a structure theorem for evolution algebras when graphs are finite and connected. We prove that for a fixed finite graph, the function spaces has a unique algebraic structure since all evolution algebras are isomorphic to each other for whichever Gibbs measures assigned. When graphs are infinite graphs then our construction allows a natural introduction of thermodynamics in studying of several systems of biology, physics and mathematics by theory of evolution algebras. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
22. On Homogeneous Weighted Algebras.
- Author
-
Micali, Artibano and Zitan, Fouad
- Subjects
ALGEBRA ,HOMOGENEOUS spaces ,JOIN spaces ,ISOMORPHISM (Mathematics) ,MATHEMATICAL category theory ,MATHEMATICAL analysis - Abstract
We extend the concept of the "join" to the case of infinitely many weighted algebras. We study the problem of its uniqueness (up to weighted isomorphism) which gives rise to a natural notion of homogeneous weighted algebras. We show that several classes of weighted algebras coming from genetics are homogeneous and that homogeneity is preserved by duplication. Finally, we examine some well-known weighted algebras satisfying identities, as Bernstein, train, and evolution algebras. [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF
23. On evolution operators in characteristic 2
- Author
-
Richard Varro, Institut Montpelliérain Alexander Grothendieck (IMAG), and Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Pure mathematics ,evolution operators ,evolution algebras ,Algebra and Number Theory ,solvable algebras ,[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC] ,010102 general mathematics ,Bernstein algebras ,010103 numerical & computational mathematics ,Secondary 17A30 ,01 natural sciences ,Nilpotent ,quasiconstant algebras ,Baric algebras ,plenary train algebras ,periodic Bernstein algebras ,0101 mathematics ,2010 MSC: Primary: 17D92 ,Secondary: 17A30 ,ultimately periodic operator 2010 MSC Primary 17D92 ,Scalar field ,Commutative property ,Mathematics ,ultimately periodic operator - Abstract
International audience; We are interested in the evolution operators defined on commutative and non-associative algebras when the characteristic of the scalar field is 2. We distinguish four types: nilpotent, quasi-constant, ultimately periodic, and plenary train operators. They are studied and classified for non-baric and for baric algebras.
- Published
- 2020
- Full Text
- View/download PDF
24. Evolution algebras
- Author
-
Cabrera Casado, Yolanda, Siles Molina, Mercedes, Velasco Collado, Mª Victoria, Álgebra, Geometría y Topología, and Siles-Molina, Mercedes
- Subjects
Evolution algebras ,Algebras non-associative ,Álgebras no asociativas ,Tesis Doctoral - Abstract
La tesis tiene por título “Álgebras de evolución”. Está escrita en inglés y tiene un total de 189 páginas. Dicho manuscrito está formado por las siguientes capítulos: 1.- Introducción 2.- Resumen en español. 3.- Hechos básicos sobre álgebras de evolución. 4.- Descomposición de un álgebra de evolución. 5.- Clasificación de las álgebras de dimensión dos. 6.- Clasificación de las álgebras de dimensión tres. 7.- Apéndice 8.- Conclusiones y trabajos futuros. 9.- Bibliografía 10.-Notación 11.-Índice alfabético. Los objetos de estudio de esta tesis son las llamadas álgebras de evolución, las cuales son una nueva clase de álgebras genéticas cuyo origen está en la formulación de la genética que no sigue las leyes de Mendel. Éstas fueron introducidas en 2008 por J.P. Tian en su libro “Evolution algebras and their applications”. Inspirada por las relaciones de las álgebras de evolución con diferentes áreas de las Matemáticas, tales como la teoría de grafos, la teoría de cuerdas, la probabilidad y la aplicación de las mismas en otros campos como las cádenas de Markov, la genética, etc., en los últimos años ha habido un aumento de las publicaciones relacionadas con este tipo de álgebras genéticas. A continuación se detalla el contenido de cada uno de los capítulos que forman esta contribución. En el Capítulo 1, se parte de las definiciones básicas de las estructuras algebraicas objeto de estudio, y que jugarán un importante papel en el resto de la tesis. Propiedades tales como la conmutatividad, la asociatividad, la flexibilidad, etc., son estudiadas en las primeras secciones. De hecho se proporciona una condición para la cual las álgebras de evolución son de potencia asociativa. En las secciones posteriores el estudio se focaliza en expresar el producto del álgebra en términos de su matriz de estructura y se dan una serie de expresiones donde se relacionan las matrices de estructura relativas a distintas bases. Esto se hace para el caso de un álgebra arbitraria y en particular para el caso de las álgebras de evolución. Dicha fórmula resultará especialmente útil para la clasificación que se hará posteriormente. En este mismo capítulo se definen subestructuras de evolución y se demuestran las distintas conexiones entre los conceptos definidos. Destacar la caracterización que se hace de las álgebras de evolución no degeneradas y la relación que se establece entre grafos y este tipo de álgebras no asociativas. Este hecho será de gran ayuda cuando se estudie la reducibilidad del álgebra de evolución en el capítulo 2. En el Capítulo 2, se empieza utilizando diferentes técnicas para describir los ideales generados por un elemento. Una importante consecuencia de los resultados obtenidos es que las álgebras de evolución simples tienen dimensión a lo sumo numerable. En los siguientes apartados se proporciona una caracterización de las álgebras de evolución simples. Para conseguir el propósito de este capítulo, el estudio de la descomposición de las álgebras de evolución de dimensión arbitraria, se introduce la noción de reducibilidad y se caracteriza en términos del grafo asociado. En la última sección se presenta una descomposición para cualquier álgebra de evolución no degenerada en términos de ideales de evolución irreducibles. Tal descomposición es lo que se llama la descomposición óptima en suma directa. Por último, se describe un método para hallar esta descomposición cuando el álgebra de evolución es de dimensión finita. Tanto el Capítulo 3 como el Capítulo 4 están dedicados a la clasificación de las álgebras de evolución de dimensión 2 y 3 respectivamente. Aunque la clasificación para la dimensión 2 ya estaba realizada sobre el cuerpo de los números complejos, en este manuscrito se ha realizado para cualquier cuerpo que verifique que los polinomios de grado dos y tres tengan una raíz. La clasificación en ambos casos se hace distinguiendo la dimensión del álgebra cuadrada. Por último se presenta todo un abanico de posibilidades para continuar con este estudio detallado en los trabajos futuros. Cabe señalar el seguir profundizando en la aplicación de los resultados obtenidos en el campo de la biología y en concreto de la genética. Se termina proporcionando la bibliografía utilizada en la que se encuentra el artículo que avala dicha tesis.
- Published
- 2016
25. Certain particular families of graphicable algebras
- Author
-
María Trinidad Villar, María Luisa Rodríguez-Arévalo, Juan Núñez, and Universidad de Sevilla. Departamento de Geometría y Topología
- Subjects
graphs ,evolution algebras ,Applied Mathematics ,Non-associative algebra ,Graphicable algebras ,Mathematics - Rings and Algebras ,Cayley–Dickson construction ,Quadratic algebra ,Algebra ,Computational Mathematics ,Interior algebra ,ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION ,Nest algebra ,Line (text file) ,17D99, 05C20, 05C50 ,Mathematics - Abstract
In this paper, we introduce some particular families of graphicable algebras obtained by following a relatively new line of research, initiated previously by some of the authors. It consists of the use of certain objects of Discrete Mathematics, mainly graphs and digraphs, to facilitate the study of graphicable algebras, which are a subset of evolution algebras., Comment: 15 pages, 8 figures
- Published
- 2013
26. A particular type of non-associative algebras and graph theory
- Author
-
Núñez Valdés, Juan, Silvero Casanova, Marithania, Villar Liñán, María Trinidad, Vasek, Vladimir (Coordinador), Shmaliy, Yuriy S. (Coordinador), Trcek, Denis (Coordinador), Kobayashi, Nobuhiko P. (Coordinador), Choras, Ryszard S. (Coordinador), Klos, Zbigniew (Coordinador), Vasek, Vladimir, Shmaliy, Yuriy S., Trcek, Denis, Kobayashi, Nobuhiko P., Choras, Ryszard S., Klos, Zbigniew, Universidad de Sevilla. Departamento de Geometría y Topología, Universidad de Sevilla. Departamento de álgebra, Universidad de Sevilla. FQM326: Geometría Diferencial y Teoría de Lie, and Universidad de Sevilla. FQM164: Matematica Discreta: Teoría de Grafos y Geometría Computacional
- Subjects
Evolution operator ,Evolution algebras ,Non-associative algebras ,Graphicable algebras ,Pseudo-graphs ,Directed graphs - Abstract
Evolution algebras have many connections with other mathematical fields, like group theory, stochastics processes, dynamical systems and other related ones. The main goal of this paper is to introduce a novel non-usual research on Discrete Mathematics regarding the use of graphs to solve some open problems related to the theory of graphicable algebras, which constitute a subset of those algebras. We show as many our advances in this field as other non solved problems to be tackled in future.
- Published
- 2011
27. Certain particular families of graphicable algebras
- Author
-
Universidad de Sevilla. Departamento de Geometría y Topología, Núñez Valdés, Juan, Rodríguez Arévalo, María Luisa, Villar Liñán, María Trinidad, Universidad de Sevilla. Departamento de Geometría y Topología, Núñez Valdés, Juan, Rodríguez Arévalo, María Luisa, and Villar Liñán, María Trinidad
- Abstract
In this paper, we introduce some particular families of graphicable algebras obtained by following a relatively new line of research, initiated previously by some of the authors. It consists of the use of certain objects of Discrete Mathematics, mainly graphs and digraphs, to facilitate the study of graphicable algebras, which are a subset of evolution algebras.
- Published
- 2014
28. A particular type of non-associative algebras and graph theory
- Author
-
Vasek, Vladimir, Shmaliy, Yuriy S., Trcek, Denis, Kobayashi, Nobuhiko P., Choras, Ryszard S., Klos, Zbigniew, Universidad de Sevilla. Departamento de Geometría y Topología, Universidad de Sevilla. Departamento de álgebra, Universidad de Sevilla. FQM326: Geometría Diferencial y Teoría de Lie, Universidad de Sevilla. FQM164: Matematica Discreta: Teoría de Grafos y Geometría Computacional, Núñez Valdés, Juan, Silvero Casanova, Marithania, Villar Liñán, María Trinidad, Vasek, Vladimir, Shmaliy, Yuriy S., Trcek, Denis, Kobayashi, Nobuhiko P., Choras, Ryszard S., Klos, Zbigniew, Universidad de Sevilla. Departamento de Geometría y Topología, Universidad de Sevilla. Departamento de álgebra, Universidad de Sevilla. FQM326: Geometría Diferencial y Teoría de Lie, Universidad de Sevilla. FQM164: Matematica Discreta: Teoría de Grafos y Geometría Computacional, Núñez Valdés, Juan, Silvero Casanova, Marithania, and Villar Liñán, María Trinidad
- Abstract
Evolution algebras have many connections with other mathematical fields, like group theory, stochastics processes, dynamical systems and other related ones. The main goal of this paper is to introduce a novel non-usual research on Discrete Mathematics regarding the use of graphs to solve some open problems related to the theory of graphicable algebras, which constitute a subset of those algebras. We show as many our advances in this field as other non solved problems to be tackled in future.
- Published
- 2011
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.