Adamska, Monika, Kowal-Wiśniewska, Ewelina, Czerwińska-Rybak, Joanna, Kiwerska, Katarzyna, Barańska, Marta, Gronowska, Weronika, Loba, Jagoda, Brzeźniakiewicz-Janus, Katarzyna, Wasilewska, Ewa, Łanocha, Aleksandra, Jarmuż-Szymczak, Małgorzata, and Gil, Lidia
Introduction: Lower-risk myelodysplastic neoplasms (LR-MDS) comprise the majority of MDS. Despite favourable prognoses, some patients remain at risk of rapid progression. We aimed to define the mutational profile of LRMDS using next-generation sequencing (NGS), Sanger Sequencing (SSeq), and pyrosequencing. Material and methods: Samples from 5 primary LR-MDS (67 exons of SF3B1, U2AF1, SRSF2, ZRSR2, TET2, ASXL1, DNMT3A, TP53, and RUNX1 genes) were subjected to NGS. Next, a genomic study was performed to test for the presence of identified DNA sequence variants on a larger group of LR-MDS patients (25 bone marrow [BM], 3 saliva [SAL], and one peripheral blood [PB] sample/s). Both SSeq (all selected DNA sequence variants) and pyrosequencing (9 selected DNA sequence variants) were performed. Results: Next-generation sequencing results identified 13 DNA sequence variants in 7 genes, comprising 8 mutations in 6 genes (ASXL1, DNMT3A, RUNX1, SF3B1, TET2, ZRSR2) in LR-MDS. The presence of 8 DNA variants was detected in the expanded LR-MDS group using SSeq and pyrosequencing. Mutation acquisition was observed during LR-MDS progression. Four LR-MDS and one acute myeloid leukaemia myelodysplasia-related patient exhibited the presence of at least one mutation. ASXL1 and SF3B1 alterations were most commonly observed (2 patients). Five DNA sequence variants detected in BM (patients: 9, 13) were also present in SAL. Conclusions: We suggest using NGS to determine the LR-MDS mutational profile at diagnosis and suspicion of disease progression. Moreover, PB and SAL molecular testing represent useful tools for monitoring LR-MDS at higher risk of progression. However, the results need to be confirmed in a larger group. [ABSTRACT FROM AUTHOR]