8 results on '"nutrient upcycling"'
Search Results
2. Nutrient upcycling and flows of carbon, nitrogen, and phosphorus in Hediste diversicolor (OF Müller, 1776) (Annelida: Nereididae) fed aquaculture sludge.
- Author
-
Anglade, Inka, Sæther, Håkon O. E., Hagemann, Andreas, Reitan, Kjell Inge, and Malzahn, Arne M.
- Subjects
SALMON farming ,NUTRIENT uptake ,BIOMASS production ,SUPPLY & demand ,NUTRITIONAL requirements - Abstract
Introduction: With the continuous growth of Atlantic salmon (Salmo salar L.) aquaculture, appropriate management of nutrient-rich waste streams from both land- and sea-based production has become increasingly important. Following a circular approach, nutrients contained in aquaculture sludge can be utilized for biomass production of the polychaete Hediste diversicolor. While the potential for upcycling nutrients has been established previously, this study aimed to assess nutrient flows in H. diversicolor fed aquaculture sludge as understanding these will be crucial for optimizing future large-scale production of this species. Materials and methods: We investigated the effect of low and high feed supply of smolt sludge on the nutrient flows of carbon (C), nitrogen (N), and phosphorus (P) in H. diversicolor on an individual level. Hereby we assessed ingestion, defecation, excretion, respiration, and uptake for growth. Results and discussion: Nutrient flows differed between the nutrients C, N, and P in the high feed supply group where C uptake for growth was significantly higher than N and P uptake, and N uptake was significantly higher than P uptake. In contrast, no significant differences were observed in the low feed supply group. In the high feed supply group, most of the ingested C, N, and P by H. diversicolor was allocated to uptake for growth (76% C, 83% N, 85% P) with smaller proportions allocated to defecation (7% C, 7% N, 11% P) and respiration/ excretion (18% C, 9% N, 5% P). The results from the low feed supply group suggest insufficient nutrient supply as most ingested C was allocated to respiration (84%), while most N was expended on uptake for growth (45%), and ingested P was either taken up for growth (58%) or spent on defecation (34%). Overall, nutrient uptake reflected the smolt sludge composition rather than nutrient requirements for H. diversicolor, which may be a short-term effect and needs to be investigated further. The flow of nutrients was strongly affected by feed supply, as ingestion, defecation, excretion, and uptake for growth were significantly higher in the high feed supply group than in the low feed supply group. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. Nutrient upcycling and flows of carbon, nitrogen, and phosphorus in Hediste diversicolor (OF Müller, 1776) (Annelida: Nereididae) fed aquaculture sludge
- Author
-
Inka Anglade, Håkon O. E. Sæther, Andreas Hagemann, Kjell Inge Reitan, and Arne M. Malzahn
- Subjects
Hediste diversicolor ,nutrient upcycling ,polychaeta ,salmon aquaculture ,aquaculture sludge ,nutrient uptake ,Science ,General. Including nature conservation, geographical distribution ,QH1-199.5 - Abstract
IntroductionWith the continuous growth of Atlantic salmon (Salmo salar L.) aquaculture, appropriate management of nutrient-rich waste streams from both land- and sea-based production has become increasingly important. Following a circular approach, nutrients contained in aquaculture sludge can be utilized for biomass production of the polychaete Hediste diversicolor. While the potential for upcycling nutrients has been established previously, this study aimed to assess nutrient flows in H. diversicolor fed aquaculture sludge as understanding these will be crucial for optimizing future large-scale production of this species.Materials and methodsWe investigated the effect of low and high feed supply of smolt sludge on the nutrient flows of carbon (C), nitrogen (N), and phosphorus (P) in H. diversicolor on an individual level. Hereby we assessed ingestion, defecation, excretion, respiration, and uptake for growth.Results and discussionNutrient flows differed between the nutrients C, N, and P in the high feed supply group where C uptake for growth was significantly higher than N and P uptake, and N uptake was significantly higher than P uptake. In contrast, no significant differences were observed in the low feed supply group. In the high feed supply group, most of the ingested C, N, and P by H. diversicolor was allocated to uptake for growth (76% C, 83% N, 85% P) with smaller proportions allocated to defecation (7% C, 7% N, 11% P) and respiration/excretion (18% C, 9% N, 5% P). The results from the low feed supply group suggest insufficient nutrient supply as most ingested C was allocated to respiration (84%), while most N was expended on uptake for growth (45%), and ingested P was either taken up for growth (58%) or spent on defecation (34%). Overall, nutrient uptake reflected the smolt sludge composition rather than nutrient requirements for H. diversicolor, which may be a short-term effect and needs to be investigated further. The flow of nutrients was strongly affected by feed supply, as ingestion, defecation, excretion, and uptake for growth were significantly higher in the high feed supply group than in the low feed supply group.
- Published
- 2024
- Full Text
- View/download PDF
4. Upcycling of carbon, nitrogen, and phosphorus from aquaculture sludge using the polychaete Hediste diversicolor (OF Müller, 1776) (Annelida: Nereididae).
- Author
-
Anglade, Inka, Kristensen, Bjørn S. B., Dahl, Thomas H., Hagemann, Andreas, Malzahn, Arne M., and Reitan, Kjell Inge
- Subjects
AQUACULTURE ,ANNELIDA ,ATLANTIC salmon ,FOOD security ,PHOSPHORUS ,SALMON farming - Abstract
Introduction: Focusing on circular bioeconomy and finding solutions for managing finite and scarce resources such as phosphorus are issues that need to be addressed across sectors to attain food security. Land-based aquaculture of Atlantic salmon (Salmo salar L.) smolt and post-smolt results in a large output of aquaculture sludge. These nutrient-rich side streams from aquaculture production constitute a valuable resource for cultivation of polychaetes Hediste diversicolor. The aim of this study was to evaluate the capacity of H. diversicolor to upcycle carbon (C), nitrogen (N), and phosphorus (P) contained in aquaculture sludge from Norwegian salmon production. Material and methods: We investigated the effect of two diets, smolt sludge and post-smolt sludge, which were supplied at four different feed levels, on the gain of C, N, and P in H. diversicolor and established uptake rates for the upcycling of these nutrients. Additionally, we examined how different feed composition (type of diet) and supply (feel level) influenced C, N, and P content as well as the elemental ratios of H. diversicolor. Results and discussion: Polychaetes fed with both types of sludge were shown to incorporate C, N, and P from their diets into biomass. Incorporation of C, N, and P in polychaete biomass was highest at the highest feed levels, following specific growth rates. Uptake of diet C, N, and P into polychaete biomass was similar for both diets and across feed levels. On average, C and N uptake rates amounted to 2-10% and 2-15%, respectively, while values for P uptake were lower at 0.5-1.5%. C, N, and P content of polychaetes was not affected by different diets or feed levels while the C:N ratio increased with increasing feed supply. Overall, we found that H. diversicolor can successfully take up nutrients contained in aquaculture sludge and thus can be beneficial for upcycling of side streams from Atlantic salmon production. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
5. Upcycling of carbon, nitrogen, and phosphorus from aquaculture sludge using the polychaete Hediste diversicolor (OF Müller, 1776) (Annelida: Nereididae)
- Author
-
Inka Anglade, Bjørn S. B. Kristensen, Thomas H. Dahl, Andreas Hagemann, Arne M. Malzahn, and Kjell Inge Reitan
- Subjects
Hediste diversicolor ,nutrient upcycling ,polychaeta ,salmon aquaculture ,aquaculture sludge ,nutrient uptake ,Nutrition. Foods and food supply ,TX341-641 ,Food processing and manufacture ,TP368-456 - Abstract
IntroductionFocusing on circular bioeconomy and finding solutions for managing finite and scarce resources such as phosphorus are issues that need to be addressed across sectors to attain food security. Land-based aquaculture of Atlantic salmon (Salmo salar L.) smolt and post-smolt results in a large output of aquaculture sludge. These nutrient-rich side streams from aquaculture production constitute a valuable resource for cultivation of polychaetes Hediste diversicolor. The aim of this study was to evaluate the capacity of H. diversicolor to upcycle carbon (C), nitrogen (N), and phosphorus (P) contained in aquaculture sludge from Norwegian salmon production.Material and methodsWe investigated the effect of two diets, smolt sludge and post-smolt sludge, which were supplied at four different feed levels, on the gain of C, N, and P in H. diversicolor and established uptake rates for the upcycling of these nutrients. Additionally, we examined how different feed composition (type of diet) and supply (feel level) influenced C, N, and P content as well as the elemental ratios of H. diversicolor.Results and discussionPolychaetes fed with both types of sludge were shown to incorporate C, N, and P from their diets into biomass. Incorporation of C, N, and P in polychaete biomass was highest at the highest feed levels, following specific growth rates. Uptake of diet C, N, and P into polychaete biomass was similar for both diets and across feed levels. On average, C and N uptake rates amounted to 2–10% and 2–15%, respectively, while values for P uptake were lower at 0.5–1.5%. C, N, and P content of polychaetes was not affected by different diets or feed levels while the C:N ratio increased with increasing feed supply. Overall, we found that H. diversicolor can successfully take up nutrients contained in aquaculture sludge and thus can be beneficial for upcycling of side streams from Atlantic salmon production.
- Published
- 2023
- Full Text
- View/download PDF
6. Cultivation of methanotrophic bacteria in a novel bubble-free membrane bioreactor for microbial protein production
- Author
-
Valverde Pérez, Borja, Xing, Wei, Zachariae, August Axel, Skadborg, Monika M., Kjeldgaard, Astrid F., Palomo, Alejandro, Smets, Barth F., Valverde Pérez, Borja, Xing, Wei, Zachariae, August Axel, Skadborg, Monika M., Kjeldgaard, Astrid F., Palomo, Alejandro, and Smets, Barth F.
- Abstract
Microbial protein is proposed as an alternative protein source with low environmental impact. Methane oxidizing bacteria are already produced at commercial scale from natural gas. However, their productivity is limited because of the creation of explosive atmospheres in the fermenters during production. This work demonstrates the applicability of bioreactors with a membrane-based gas supply via diffusion. Methanotrophic bacteria were successfully cultivated, with growth yields from 0.26 to 0.43 g-VSS g-CH4 −1, slightly below those observed in analogous fermenters relying on bubbling. However, ammonia yields ranged from 5.2 to 6.9 g-VSS g-NH3 −1, indicating higher nitrogen assimilation than in conventional fermenters. Indeed, protein content increased during the operational period reaching up to 51% of dry weight. The amino acid profile included the majority of the essential amino acids, demonstrating suitability as feed ingredient. Never during the operational period was an explosive atmosphere established in the reactor. Thus, bubble-free membrane bioreactors are a promising technology for microbial protein production relying on explosive gas mixtures.
- Published
- 2020
7. Cultivation of methanotrophic bacteria in a novel bubble-free membrane bioreactor for microbial protein production
- Author
-
Wei Xing, M.M. Skadborg, Barth F. Smets, Astrid F. Kjeldgaard, August A. Zachariae, Alejandro Palomo, and Borja Valverde-Pérez
- Subjects
0106 biological sciences ,Environmental Engineering ,Nitrogen ,Nitrogen assimilation ,Nutrient upcycling ,Bioengineering ,010501 environmental sciences ,Membrane bioreactor ,01 natural sciences ,Ammonia ,chemistry.chemical_compound ,Ingredient ,Bioreactors ,Microbial protein ,Natural gas ,010608 biotechnology ,Bioreactor ,Waste Management and Disposal ,0105 earth and related environmental sciences ,biology ,Hydrophobic membranes ,Renewable Energy, Sustainability and the Environment ,Chemistry ,business.industry ,General Medicine ,Pulp and paper industry ,biology.organism_classification ,Membrane ,Methane oxidizing bacteria ,Methylococcaceae ,business ,Methane ,Bacteria - Abstract
Microbial protein is proposed as an alternative protein source with low environmental impact. Methane oxidizing bacteria are already produced at commercial scale from natural gas. However, their productivity is limited because of the creation of explosive atmospheres in the fermenters during production. This work demonstrates the applicability of bioreactors with a membrane-based gas supply via diffusion. Methanotrophic bacteria were successfully cultivated, with growth yields from 0.26 to 0.43 g-VSS g-CH4 −1, slightly below those observed in analogous fermenters relying on bubbling. However, ammonia yields ranged from 5.2 to 6.9 g-VSS g-NH3 −1, indicating higher nitrogen assimilation than in conventional fermenters. Indeed, protein content increased during the operational period reaching up to 51% of dry weight. The amino acid profile included the majority of the essential amino acids, demonstrating suitability as feed ingredient. Never during the operational period was an explosive atmosphere established in the reactor. Thus, bubble-free membrane bioreactors are a promising technology for microbial protein production relying on explosive gas mixtures.
- Published
- 2020
- Full Text
- View/download PDF
8. Coupling ecological wastewater treatment with the production of livestock feed and irrigation water provides net benefits to human health and the environment: A life cycle assessment.
- Author
-
Roman, B. and Brennan, R.A.
- Subjects
- *
WASTEWATER treatment , *ANIMAL feeds , *LIVESTOCK productivity , *HUMAN ecology , *VERTICAL farming , *GREENHOUSE gardening , *IRRIGATION water - Abstract
Ecologically designed wastewater treatment systems (ex., Eco-Machines™) utilize a diverse ecosystem to treat wastewater to the same extent as conventional treatment, but require less energy and chemical inputs. The environmental benefits of Eco-Machines™ can be theoretically maximized by incorporating hyperaccumulating aquatic plants (ex., duckweed) to facilitate nutrient recovery and conversion into protein-rich biomass, which can then be harvested for a range of agricultural and bioenergy applications. Although it has been established that ecological wastewater treatment systems are more cost- and energy-efficient than conventional wastewater treatment systems, a systematic life cycle assessment (LCA) of an Eco-Machine™ coupled with its beneficial by-products has not been conducted. In this study, a series of LCAs were performed on different operational scenarios for a 1000 gallon per day, pilot-scale Eco-Machine™ that, in addition to producing irrigation-quality water, also produces duckweed biomass for aquaculture. The analysis revealed that Eco-Machines™ located in warm climates, which do not require a greenhouse or supplemental heating, use approximately a third of the energy and produce half of the greenhouse gas emissions compared to conventional wastewater treatment systems in similar locations, while also providing benefits to human health, ecosystem quality, climate change, and resources. In addition, increasing the growth area for duckweed using vertical farming techniques improves the overall impact of the system. This study suggests that with proper management, ecological wastewater treatment systems that upcycle nutrients and water into beneficial products can provide a net benefit to human health and the environment. • First LCA of ecological wastewater treatment coupled with duckweed production. • Eco-Machines™ can provide a net benefit to human health and the environment. • Increasing duckweed production increases the beneficial impacts of Eco-Machines™. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.