36 results on '"residual distribution schemes"'
Search Results
2. An enthalpy‐preserving shock‐capturing term for residual distribution schemes.
- Author
-
Garicano‐Mena, J. and Degrez, G.
- Subjects
ENTHALPY ,MECHANICAL shock ,RESIDUAL stresses - Abstract
Summary: In this contribution, we investigate strategies to perform shock‐capturing computation of steady hypersonic flow fields by means of residual distribution schemes. The ultimate objective is the computation of flow solutions for which the correct upstream enthalpy value is recovered in the postshock region. To this end, the parallelism existing between the classical Bx scheme and the stabilized finite element techniques is exploited. The simple Lax‐Friedrichs dissipation term is leveraged to build two new residual distribution schemes. Upon testing on both inviscid and viscous steady problems, solutions obtained with one of the two schemes are shown to recover the correct upstream total enthalpy level in the postshock region. This last scheme provides also improved wall pressure and skin friction predictions; heat transfer predictions are, unfortunately, similar to those offered by the Bx scheme. A conjecture for explaining this behavior is exposed. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
3. An entropy-variables-based formulation of residual distribution schemes for non-equilibrium flows.
- Author
-
Garicano-Mena, Jesús, Lani, Andrea, and Degrez, Gérard
- Subjects
- *
ENTROPY (Information theory) , *MATHEMATICAL variables , *NONEQUILIBRIUM flow , *MATHEMATICAL transformations , *VISCOUS flow - Abstract
In this paper we present an extension of Residual Distribution techniques for the simulation of compressible flows in non-equilibrium conditions. The latter are modeled by means of a state-of-the-art multi-species and two-temperature model. An entropy-based variable transformation that symmetrizes the projected advective Jacobian for such a thermophysical model is introduced. Moreover, the transformed advection Jacobian matrix presents a block diagonal structure, with mass-species and electronic-vibrational energy being completely decoupled from the momentum and total energy sub-system. The advantageous structure of the transformed advective Jacobian can be exploited by contour-integration-based Residual Distribution techniques: established schemes that operate on dense matrices can be substituted by the same scheme operating on the momentum–energy subsystem matrix and repeated application of scalar scheme to the mass-species and electronic-vibrational energy terms. Finally, the performance gain of the symmetrizing-variables formulation is quantified on a selection of representative testcases, ranging from subsonic to hypersonic, in inviscid or viscous conditions. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
4. Construction of a p-Adaptive Continuous Residual Distribution Scheme.
- Author
-
Abgrall, R., Viville, Q., Beaugendre, H., and Dobrzynski, C.
- Abstract
A p-adaptive continuous residual distribution scheme is proposed in this paper. Under certain conditions, primarily the expression of the total residual on a given element K into residuals on the sub-elements of K and the use of a suitable combination of quadrature formulas, it is possible to change locally the degree of the polynomial approximation of the solution. The discrete solution can then be considered non continuous across the interface of elements of different orders, while the numerical scheme still verifies the hypothesis of the discrete Lax-Wendroff theorem which ensures its convergence to a correct weak solution. We detail the theoretical material and the construction of our p-adaptive method in the frame of a continuous residual distribution scheme. Different test cases for non-linear equations at different flow velocities demonstrate numerically the validity of the theoretical results. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
5. An ALE residual distribution scheme for the unsteady Euler equations over triangular grids with local mesh adaptation
- Author
-
Stefano Colombo and Barbara Re
- Subjects
Arbitrary Lagrangian–Eulerian (ALE) framework ,J.2 ,General Computer Science ,65M50 (Primary) 76M12 (secondary) ,Unsteady Euler equations ,General Engineering ,G.1.8 ,Fluid Dynamics (physics.flu-dyn) ,FOS: Physical sciences ,Unstructured mesh adaptation ,Physics - Fluid Dynamics ,Numerical Analysis (math.NA) ,Geometric conservation law (GCL) ,Residual distribution schemes ,FOS: Mathematics ,Mathematics - Numerical Analysis ,ComputingMethodologies_COMPUTERGRAPHICS - Abstract
This work presents a novel interpolation-free mesh adaptation technique for the Euler equations within the arbitrary Lagrangian Eulerian framework. For the spatial discretization, we consider a residual distribution scheme, which provides a pretty simple way to achieve high order accuracy on unstructured grids. Thanks to a special interpretation of the mesh connectivity changes as a series of fictitious continuous deformations, we can enforce by construction the so-called geometric conservation law, which helps to avoid spurious oscillations while solving the governing equations over dynamic domains. This strategy preserves the numerical properties of the underlying, fixed-connectivity scheme, such as conservativeness and stability, as it avoids an explicit interpolation of the solution between different grids. The proposed approach is validated through the two-dimensional simulations of steady and unsteady flow problems over unstructured grids., Comment: 29 pages, 19 figures, post-print version
- Published
- 2022
6. A second order residual based predictor–corrector approach for time dependent pollutant transport.
- Author
-
Pavan, S., Hervouet, J.-M., Ricchiuto, M., and Ata, R.
- Subjects
- *
POLLUTANTS , *DISTRIBUTION (Probability theory) , *WATER depth , *RUNGE-Kutta formulas , *HYDRODYNAMICS , *CONSERVATION of mass - Abstract
We present a second order residual distribution scheme for scalar transport problems in shallow water flows. The scheme, suitable for the unsteady cases, is obtained adapting to the shallow water context the explicit Runge–Kutta schemes for scalar equations [1] . The resulting scheme is decoupled from the hydrodynamics yet the continuity equation has to be considered in order to respect some important numerical properties at discrete level. Beyond the classical characteristics of the residual formulation presented in [1,2] , we introduce the possibility to iterate the corrector step in order to improve the accuracy of the scheme. Another novelty is that the scheme is based on a precise monotonicity condition which guarantees the respect of the maximum principle. We thus end up with a scheme which is mass conservative, second order accurate and monotone. These properties are checked in the numerical tests, where the proposed approach is also compared to some finite volume schemes on unstructured grids. The results obtained show the interest in adopting the predictor–corrector scheme for pollutant transport applications, where conservation of the mass, monotonicity and accuracy are the most relevant concerns. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
7. HIGH-ORDER PRESERVING RESIDUAL DISTRIBUTION SCHEMES FOR ADVECTION-DIFFUSION SCALAR PROBLEMS ON ARBITRARY GRIDS.
- Author
-
ABGRALL, R., DE SANTIS, D., and RICCHIUTO, M.
- Subjects
- *
HIGH-order derivatives (Mathematics) , *HIGHER order transitions , *ADVECTION-diffusion equations , *TRANSPORT equation , *LAGRANGIAN functions - Abstract
This paper deals with the construction of a class of high-order accurate residual distribution schemes for advection-diffusion problems using conformal meshes. The problems considered range from pure diffusion to pure advection. The approximation of the solution is obtained using standard Lagrangian finite elements and the total residual of the problem is constructed taking into account both the advective and the diffusive terms in order to discretize with the same scheme both parts of the governing equation. To cope with the fact that the normal component of the gradient of the numerical solution is discontinuous across the faces of the elements, the gradient of the numerical solution is reconstructed at each degree of freedom of the grid and then interpolated with the same shape functions used for the solution. Linear and nonlinear schemes are constructed and their accuracy is tested with the discretization of advection-diffusion and anisotropic diffusion problems. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
8. Numerical approximation of parabolic problems by residual distribution schemes.
- Author
-
Abgrall, R., Baurin, G., Krust, A., de Santis, D., and Ricchiuto, M.
- Abstract
SUMMARY We are interested in the numerical approximation of steady scalar convection-diffusion problems by means of high order schemes called Residual Distribution schemes. In the inviscid case, one can develop nonlinear Residual Distribution schemes that are nonoscillatory, even in the case of very strong discontinuities, while having the most possible compact stencil, on hybrid unstructured meshes. This paper proposes and compare extensions of these schemes for the convection-diffusion problem. This methodology, in particular in terms of accuracy, is evaluated on problem with exact solutions. Its nonoscillatory behavior is tested against the Smith and Hutton problem. Copyright © 2012 John Wiley & Sons, Ltd. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
9. Third order residual distribution schemes for the Navier–Stokes equations
- Author
-
Villedieu, N., Quintino, T., Ricchiuto, M., and Deconinck, H.
- Subjects
- *
NAVIER-Stokes equations , *LAGRANGE equations , *FINITE element method , *INVISCID flow , *REYNOLDS number , *GALERKIN methods - Abstract
Abstract: We construct a third order multidimensional upwind residual distribution scheme for the system of the Navier–Stokes equations. The underlying approximation is obtained using standard P 2 Lagrange finite elements. To discretise the inviscid component of the equations, each element is divided in sub-elements over which we compute a high order residual defined as the integral of the inviscid fluxes on the boundary of the sub-element. The residuals are distributed to the nodes of each sub-element in a multi-dimensional upwind way. To obtain a discretisation of the viscous terms consistent with this multi-dimensional upwind approach, we make use of a Petrov–Galerkin analogy. The analogy allows to find a family of test functions which can be used to obtain a weak approximation of the viscous terms. The performance of this high-order method is tested on flows with high and low Reynolds number. [Copyright &y& Elsevier]
- Published
- 2011
- Full Text
- View/download PDF
10. Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes
- Author
-
Abgrall, R., Larat, A., and Ricchiuto, M.
- Subjects
- *
INVISCID flow , *EULER method , *LAGRANGE equations , *FINITE element method , *OSCILLATIONS , *NUMERICAL grid generation (Numerical analysis) - Abstract
Abstract: In this paper we consider the very high order approximation of solutions of the Euler equations. We present a systematic generalization of the residual distribution method of to very high order of accuracy, by extending the preliminary work discussed in to systems and hybrid meshes. We present extensive numerical validation for the third and fourth order cases with Lagrange finite elements. In particular, we demonstrate that we both have a non-oscillatory behavior, even for very strong shocks and complex flow patterns, and the expected accuracy on smooth problems. [Copyright &y& Elsevier]
- Published
- 2011
- Full Text
- View/download PDF
11. An Example of High Order Residual Distribution Scheme Using non-Lagrange Elements.
- Author
-
Abgrall, R. and Trefilík, J.
- Published
- 2010
- Full Text
- View/download PDF
12. Reinterpretation and extension of entropy correction terms for residual distribution and discontinuous Galerkin schemes: Application to structure preserving discretization.
- Author
-
Abgrall, Rémi, Öffner, Philipp, and Ranocha, Hendrik
- Subjects
- *
ENTROPY , *EULER equations , *GALERKIN methods , *KINETIC energy - Abstract
For the general class of residual distribution (RD) schemes, including many finite element (such as continuous/discontinuous Galerkin) and flux reconstruction methods, an approach to construct entropy conservative/ dissipative semidiscretizations by adding suitable correction terms has been proposed by Abgrall ((2018) [1]). In this work, the correction terms are characterized as solutions of certain optimization problems and are adapted to the SBP-SAT framework, focusing on discontinuous Galerkin methods. Novel generalizations to entropy inequalities, multiple constraints, and kinetic energy preservation for the Euler equations are developed and tested in numerical experiments. For all of these optimization problems, explicit solutions are provided. Additionally, the correction approach is applied for the first time to obtain a fully discrete entropy conservative/dissipative RD scheme. Here, the application of the deferred correction (DeC) method for the time integration is essential. This paper can be seen as describing a systematic method to construct structure preserving discretization, at least for the considered example. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
13. A class of residual distribution schemes and their relation to relaxation systems
- Author
-
Rossmanith, James A.
- Subjects
- *
DISTRIBUTION (Probability theory) , *FINITE volume method , *RIEMANNIAN geometry , *NUMERICAL solutions to equations - Abstract
Abstract: Residual distributions (RD) schemes are a class of high-resolution finite volume methods for unstructured grids. A key feature of these schemes is that they make use of genuinely multidimensional (approximate) Riemann solvers as opposed to the piecemeal 1D Riemann solvers usually employed by finite volume methods. In 1D, LeVeque and Pelanti [R.J. LeVeque, M. Pelanti, A class of approximate Riemann solvers and their relation to relaxation schemes, J. Comput. Phys. 172 (2001) 572] showed that many of the standard approximate Riemann solver methods (e.g., the Roe solver, HLL, Lax-Friedrichs) can be obtained from applying an exact Riemann solver to relaxation systems of the type introduced by Jin and Xin [S. Jin, Z.P. Xin, Relaxation schemes for systems of conservation-laws in arbitrary space dimensions, Commun. Pure Appl. Math. 48 (1995) 235]. In this work we extend LeVeque and Pelanti’s results and obtain a multidimensional relaxation system from which multidimensional approximate Riemann solvers can be obtained. In particular, we show that with one choice of parameters the relaxation system yields the standard N-scheme. With another choice, the relaxation system yields a new Riemann solver, which can be viewed as a genuinely multidimensional extension of the local Lax-Friedrichs scheme. This new Riemann solver does not require the use Roe–Struijs–Deconinck averages, nor does it require the inversion of an m × m matrix in each computational grid cell, where m is the number of conserved variables. Once this new scheme is established, we apply it on a few standard cases for the 2D compressible Euler equations of gas dynamics. We show that through the use of linear-preserving limiters, the new approach produces numerical solutions that are comparable in accuracy to the N-scheme, despite being computationally less expensive. [Copyright &y& Elsevier]
- Published
- 2008
- Full Text
- View/download PDF
14. Residual Distribution Schemes on Quadrilateral Meshes.
- Author
-
Abgrall, R. and Marpeau, F.
- Published
- 2007
- Full Text
- View/download PDF
15. Residual distribution schemes for advection and advection–diffusion problems on quadrilateral cells
- Author
-
De Palma, P., Pascazio, G., Rubino, D.T., and Napolitano, M.
- Subjects
- *
WAVES (Physics) , *ERROR analysis in mathematics , *DIFFUSION , *NUMERICAL analysis - Abstract
Abstract: This paper provides a study of some difficulties arising when extending residual distribution schemes for scalar advection and advection–diffusion problems from triangular grids to quadrilateral ones. The Fourier and truncation error analyses on a structured mesh are employed and a generalized modified wavenumber is defined, which provides a general framework for the multidimensional analysis and comparison of different schemes. It is shown that, for the advection equation, linearity preserving schemes for quadrilaterals provide lower dissipation with respect to their triangle-based counterparts and very low or no damping for high frequency Fourier modes on structured grids; therefore, they require an additional artificial dissipation term for damping marginally stable modes in order to be employed with success for pure advection problems. In the case of advection–diffusion problems, a hybrid approach using an upwind residual distribution scheme for the convective fluctuation and any other scheme for the diffusion term is only first-order accurate. On the other hand, distributing the entire residual by an upwind scheme provides second-order accuracy; however, such an approach is unstable for diffusion dominated problems, since residual distribution schemes are characterized by undamped modes associated with the discretization of the diffusive fluctuation. The present analysis allows one to determine the conditions for a stable hybrid approach to be second-order accurate and to design an optimal scheme having minimum dispersion error on a nine-point stencil. Well-documented test-cases for advection and advection–diffusion problems are used to compare the accuracy properties of several schemes. [Copyright &y& Elsevier]
- Published
- 2006
- Full Text
- View/download PDF
16. Conservative scheme compatible with some other conservation laws: Conservation of the local angular momentum.
- Author
-
Abgrall, Rémi and Nassajian Mojarrad, Fatemeh
- Subjects
- *
CONSERVATION laws (Physics) , *ANGULAR momentum (Mechanics) , *EULER equations , *CONSERVATIVES - Published
- 2022
- Full Text
- View/download PDF
17. A non-linear residual distribution scheme for real-gas computations.
- Author
-
Abgrall, R., Congedo, P.M., De Santis, D., and Razaaly, N.
- Subjects
- *
GAS flow , *THERMODYNAMICS , *SHOCK waves , *GAS dynamics , *LIQUID-vapor interfaces , *COMPUTER simulation , *CRITICAL point (Thermodynamics) - Abstract
This paper deals with a high-order accurate Residual Distribution scheme for the numerical solution of dense gas flows on unstructured grids. Dense gas-dynamics studies the flow of gases in the thermodynamic region above the upper saturation curve, close to the liquid–vapor critical point. In such conditions, some fluids may exhibit negative values of the fundamental derivative of gas-dynamics, leading to non-classical gas-dynamic behaviors, such as rarefaction shock waves, mixed shock/fan waves, and shock splitting. Due to the complexity in performing reliable experimental studies for non-classical gas-dynamics, accurate numerical simulations of dense gas flows are of paramount importance. In this work, advantages in using high-order methods are highlighted, in terms of number of degrees of freedom and computational time used, for computing the numerical solution with a greater accuracy compared to lower-order methods, even for shocked flows. Several numerical experiments are also performed to assess the influence of the thermodynamic models on the problem solution. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
18. An ALE residual distribution scheme for the unsteady Euler equations over triangular grids with local mesh adaptation.
- Author
-
Colombo, Stefano and Re, Barbara
- Subjects
- *
GEOMETRICAL constructions , *ALE , *CONSERVATION laws (Physics) , *STATUTORY interpretation , *CONSTRUCTION laws , *INVISCID flow , *EULER equations , *UNSTEADY flow - Abstract
This work presents a novel interpolation-free mesh adaptation technique for the Euler equations within the arbitrary Lagrangian–Eulerian framework. For the spatial discretization, we consider a residual distribution scheme, which provides a pretty simple way to achieve high order accuracy on unstructured grids. Thanks to a special interpretation of the mesh connectivity changes as a series of fictitious continuous deformations, we can enforce by construction the so-called geometric conservation law, which helps to avoid spurious oscillations while solving the governing equations over dynamic domains. This strategy preserves the numerical properties of the underlying, fixed-connectivity scheme, such as conservativeness and stability, as it avoids an explicit interpolation of the solution between different grids. The proposed approach is validated through the two-dimensional simulations of steady and unsteady flow problems over unstructured grids. • Innovative residual distribution scheme for adaptive triangular grids. • Arbitrary Lagrangian–Eulerian formulation used to avoid solution interpolation. • Geometric conservation law enforced by construction. • Well-suited scheme for unsteady inviscid flow problems with boundary movement. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
19. On the well-posedness of the multi-dimensional Roe-Liu-Vinokur linearization for residual distribution schemes
- Author
-
Jesús Garicano-Mena and Gérard Degrez
- Subjects
Unstructured grids ,Physics and Astronomy (miscellaneous) ,Informatique appliquée logiciel ,Thermo-chemical non-equilibrium ,Computational fluid dynamics ,01 natural sciences ,Residual distribution ,010305 fluids & plasmas ,Aeronáutica ,Linearization ,Mathematics::K-Theory and Homology ,0103 physical sciences ,Applied mathematics ,0101 mathematics ,Roe linearization ,Mathematics ,Numerical Analysis ,business.industry ,Physique ,Applied Mathematics ,Hypersonic flow ,Astronomie ,Computer Science Applications ,010101 applied mathematics ,Computational Mathematics ,Modeling and Simulation ,Multi dimensional ,business ,Residual distribution schemes ,Well posedness - Abstract
SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2019
20. Some examples of high order simulations parallel of inviscid flows on unstructured and hybrid meshes by residual distribution schemes
- Author
-
Abgrall, R., Baurin, G., Jacq, P., and Ricchiuto, M.
- Subjects
- *
SIMULATION methods & models , *PARALLEL algorithms , *INVISCID flow , *GRID computing , *MATHEMATICAL transformations , *COMPUTATIONAL fluid dynamics - Abstract
Abstract: Our aim is to report some recent advances in the development of residual distribution (RD) schemes using unstructured meshes: we present here some 3D results using pure tet meshes with a third order accurate scheme and 3D results using meshes with hex only. These latter meshes originate from ONERA where they have been used for Euler simulations with the Elsa code. Elsa only uses block structured meshes so that we have transformed the “ijk” format of the mesh into a nonstructured one without modifying the location of vertices and the connectivity of the mesh, so that it is exactly the same mesh. [Copyright &y& Elsevier]
- Published
- 2012
- Full Text
- View/download PDF
21. An enthalpy-preserving shock-capturing term for residual distribution schemes
- Author
-
Garicano-Mena, J. and Degrez, G.
- Subjects
Mathématiques ,hypersonic flow ,residual distribution schemes ,shock capturing ,Mécanique sectorielle ,Informatique appliquée logiciel ,Mécanique appliquée générale ,adiabatic perfect gas ,unstructured grids ,Technologie des autres industries - Abstract
In this contribution, we investigate strategies to perform shock-capturing computation of steady hypersonic flow fields by means of residual distribution schemes. The ultimate objective is the computation of flow solutions for which the correct upstream enthalpy value is recovered in the postshock region. To this end, the parallelism existing between the classical Bx scheme and the stabilized finite element techniques is exploited. The simple Lax-Friedrichs dissipation term is leveraged to build two new residual distribution schemes. Upon testing on both inviscid and viscous steady problems, solutions obtained with one of the two schemes are shown to recover the correct upstream total enthalpy level in the postshock region. This last scheme provides also improved wall pressure and skin friction predictions; heat transfer predictions are, unfortunately, similar to those offered by the Bx scheme. A conjecture for explaining this behavior is exposed., SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2018
22. An arbitrary Lagrangian Eulerian formulation for residual distribution schemes on moving grids
- Author
-
Michler, C., De Sterck, H., and Deconinck, H.
- Subjects
- *
EULER characteristic , *DISTRIBUTION (Probability theory) - Abstract
The arbitrary Lagrangian Eulerian formulation is derived for the residual distribution method on moving meshes. The system of Euler equations is discretized on moving meshes and in case of deforming meshes a geometrical source term has to be taken into account. A conservative linearization guarantees the conservation property of the discretized equations.From the geometric conservation law we obtain the appropriate integration points in time for the cell fluctuation and a guideline for how to distribute the geometrical source term.Testcases include the flow around a transonic oscillating airfoil and a convected vortex. In the first case a rigidly moving mesh is employed, while in the other testcase a deforming mesh is used to investigate the influence of the geometrical source term on the solution. [Copyright &y& Elsevier]
- Published
- 2003
- Full Text
- View/download PDF
23. An enthalpy-preserving shock-capturing term for residual distribution schemes
- Author
-
Garicano-Mena, Jesús, Degrez, Gérard, Garicano-Mena, Jesús, and Degrez, Gérard
- Abstract
In this contribution, we investigate strategies to perform shock-capturing computation of steady hypersonic flow fields by means of residual distribution schemes. The ultimate objective is the computation of flow solutions for which the correct upstream enthalpy value is recovered in the postshock region. To this end, the parallelism existing between the classical Bx scheme and the stabilized finite element techniques is exploited. The simple Lax-Friedrichs dissipation term is leveraged to build two new residual distribution schemes. Upon testing on both inviscid and viscous steady problems, solutions obtained with one of the two schemes are shown to recover the correct upstream total enthalpy level in the postshock region. This last scheme provides also improved wall pressure and skin friction predictions; heat transfer predictions are, unfortunately, similar to those offered by the Bx scheme. A conjecture for explaining this behavior is exposed., SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2018
24. Construction of a p-Adaptive Continuous Residual Distribution Scheme
- Author
-
Rémi Abgrall, Quentin Viville, Cécile Dobrzynski, Héloïse Beaugendre, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Universität Zürich [Zürich] = University of Zurich (UZH), Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts (CARDAMOM), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Polytechnique de Bordeaux (Bordeaux INP), PLAFRIM-CPU-MCIA, Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut Polytechnique de Bordeaux, Programme IdEx Bordeaux - CPU (ANR-10-IDEX-03-02)SNF grant 200021_153604., ANR-10-IDEX-0003,IDEX BORDEAUX,Initiative d'excellence de l'Université de Bordeaux(2010), University of Zurich, and Abgrall, Rémi
- Subjects
Unstructured meshes ,010103 numerical & computational mathematics ,Residual ,01 natural sciences ,Residual distribution ,Theoretical Computer Science ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,residual distribution schemes ,non oscillatory schemes ,510 Mathematics ,2604 Applied Mathematics ,0101 mathematics ,Compressible navier stokes equations ,2614 Theoretical Computer Science ,Mesh adaptation ,2612 Numerical Analysis ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Numerical Analysis ,Applied Mathematics ,Weak solution ,Mathematical analysis ,General Engineering ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,Quadrature (mathematics) ,010101 applied mathematics ,1712 Software ,Computational Mathematics ,10123 Institute of Mathematics ,Test case ,Computational Theory and Mathematics ,Compressible Navier Stokes equations ,2200 General Engineering ,2605 Computational Mathematics ,Software ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,1703 Computational Theory and Mathematics - Abstract
A \textit{p}-adaptive continuous Residual Distribution scheme is proposed in this paper. Under certain conditions, primarily the expression of the total residual on a given element $K$ into residuals on the sub-elements of $K$ and the use of a suitable combination of quadrature formulas, it is possible to change locally the degree of the polynomial approximation of the solution. The discrete solution can then be considered non continuous across the interface of elements of different orders, while the numerical scheme still verifies the hypothesis of the discrete Lax-Wendroff theorem which ensures its convergence to a correct weak solution. We detail the theoretical material and the construction of our \textit{p}-adaptive method in the frame of a continuous Residual Distribution scheme. Different test cases for non-linear equations at different flow velocities demonstrate numerically the validity of the theoretical results.
- Published
- 2017
- Full Text
- View/download PDF
25. Residual distribution advection schemes in Telemac
- Author
-
Hervouet, Jean-Michel, Pavan, Sara, Ricchiuto, Mario, Laboratoire d'Hydraulique Saint-Venant / Saint-Venant laboratory for Hydraulics (LHSV), École des Ponts ParisTech (ENPC)-Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement (Cerema)-EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), Simulation et Traitement de l'information pour l'Exploitation des systèmes de Production (EDF R&D STEP), EDF R&D (EDF R&D), Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts (CARDAMOM), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Inria Bordeaux Sud-Ouest, Laboratoire d'Hydraulique Saint-Venant / Saint-Venant laboratory for Hydraulics (Saint-Venant), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
- Subjects
residual distribution schemes ,schémas aux résidus distribués ,Telemac ,advection ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,convection - Abstract
This report gives an overview of the different implementations of residual distribution schemes for the advection equation in Telemac (www.opentelemac.org). The formulations considered are obtained starting from the predictor-corrector method initially proposed in (Ricchiuto et Abgrall, JCP 2010). Several iteration techniques (NERD, LIPS and ERIA) are proposed and tested in terms of accuracy and efficiency. The basic idea of NERD is a transfer of fluxes done segment by segment, surprisingly this results in an unconditional stability. LIPS is based upon a local implicitation coefficient, ERIA inspires from NERD and treats the fluxes triangle by triangle. The main advances are the low numerical diffusion coupled with an unconditional stability that allows to deal with shallow or even dry zones in a computational domain.; Ce rapport présente toutes les variantes des schémas aux résidus dis-tribués utilisés pour les termes de convection dans le système hydroinformatique Telemac(www.opentelemac.org). Les différentes formulations considérées se basent sur une re-écriture de la méthode de prédiction-correction (Ricchiuto et Abgrall, JCP 2010). Plusieurstechniques itératives (nommées NERD, LIPS et ERIA) sont proposées et étudiées en ter-mes de précision et efficacité. NERD exploite l’idée d’un passage de flux segment parsegment et obtient ainsi une stabilité inconditionnelle, LIPS met en œuvre un coefficientd’implicitation local, ERIA reprend l’idée de NERD mais en l’appliquant à un traitementdes flux triangle par triangle. Les acquis importants sont la faible diffusion numérique etla capacité de fonctionner sur des zones à hauteur d’eau faible ou nulle.
- Published
- 2017
26. Schémas aux résidus distribués adaptatifs pour résoudre les équations de Navier Stokes pénalisées avec objets mobiles : applications aux trajectoires de glace dans le cadre du givrage
- Author
-
Nouveau, Léo, Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts (CARDAMOM), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Université de Bordeaux, Mario Ricchiuto, Héloïse Beaugendre, and Cécile Dobrzynski
- Subjects
Objets mobiles ,[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] ,Fluid structure interaction ,Schémas aux résidus distribués ,Adaptation de maillage ,Mesh adaptation ,Residual distribution schemes ,Penalization ,Pénalization ,Moving bodies ,Interaction fluide structure - Abstract
The prediction of solid motion evolving in a fluid presents a real interest for engineering application such as ice accretion on aerodynamics bodies.In this context, considering de-icing systems, the ice shedding trajectory is needed to prevent the risk of collision/ingestion of the ice in/with some sensitive part of the aircraft. This application raises many challenges from a numerical point of view, especially concerning mesh generation/adaptation as the solid moves in the computational domain. To handle this issue, in this work the solids are known implicitly on the mesh via a level set function. An immersed boundary method, called penalization, is employed to impose the wall boundary conditions. To improve the resolution of these boundaries, the equations are solved on adaptive unstructured grids. This allows to have are finement close to the solid boundary and thus increases the solid definition,leading to a more accurate imposition of the wall conditions. To save computational time, and avoid costly remeshing/interpolation steps, the strategy chosen for unsteady simulations is to use a constant connectivity mesh adaptation,also known as r-adaptation; La prédiction de mouvement de solide évoluant dans un fluide présente un réel intérêt pour des applications industrielles telle que l’accrétion de glace sur des surfaces aérodynamiques. Dans ce contexte, en considérant des systèmes de dégivrage, la prévision des trajectoire de glace est nécessaire pour éviter des risques de collision/ingestion de glace sur/dans des zones sensibles de l’avion. Ce type d’application soulève de nombreux challenges d’un point de vue numérique, en particulier concernant la génération/l’adaptation de maillage au cours du mouvement du solide dans le domaine. Pour gérer ces difficultés, dans cette étude, les solides sont définis de manière implicite via une fonction level set. Une méthode de type frontière immergée, appelée Pénalization, est utilisée pour imposer les conditions de bords. Pour améliorer la précision de l’interface, les équations sont résolues sur des maillages non structurés adaptatifs. Cela permet d’obtenir un raffinement proche des bords du solide et ainsi d’améliorer sa définition, permettant un meilleure impositions des conditions de bord. Pour économiser du temps de calcul, et éviter de coûteuses étapes de remaillage/interpolation, la stratégie adoptée pour les simulations instationnaires est d’utiliser une adaptation de maillage à connectivité constante, aussi appelée r-adaptation.
- Published
- 2016
27. Construction d’une méthode hp-adaptative pour les schémas aux Résidus Distribués
- Author
-
Viville, Quentin, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria), Université de Bordeaux, Rémi Abgrall, Héloïse Beaugendre, and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Anisotropic mesh adaptation ,Schémas aux Résidus Distribués ,Euler equations ,Hp-adaptation ,Équations de Navier-Stokes ,High-order methods ,[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] ,Adaptation de maillage anisotrope ,Écoulements compressibles ,Compressible flows ,Residual Distribution schemes ,Navier-Stokes equations ,P-adaptation ,Méthodes d’ordre élevé ,Équations d’Euler - Abstract
This thesis presents the construction of a p-adaptive Residual Distribution scheme for the steady Euler equations and a hp-adaptive Residual Distribution scheme for the steady penalized Navier-Stokes equations in dimension two and three. The Euler and Navier-Stokes equations are recalled along with their non dimensional versions. The basis definitions and properties of the steady Residual Distribution schemes are presented. Then, the construction of a p-adaptive Residual Distribution scheme for the Euler equations is considered. The construction of the p-adaptive scheme is based upon the expression of the total residual of an element of a given degree k (in the Finite Element sense) into the total residuals of its linear sub-elements. The discrete solution obtained with the p-adaptive scheme is then a one degree polynomial in the divided elements and a k-th degree polynomial in the undivided ones. Therefore, the discrete solution is in general discontinuous at the interface between a divided element and an undivided one. This is in apparent contradiction with the continuity assumption used in general to demonstrate the discrete Lax-Wendroff theorem for Residual Distribution schemes. However, as we show in this work, this constrain can be relaxed. The consequence is that if special quadrature formulas are employed in the numerical implementation, the discrete Lax-Wendroff theorem can still be proved, which guaranties the convergence of the p-adaptive scheme to a weak solution of the governing equations. The formulas that express the total residual into the combination of the total residuals of the sub-elements are central to the method. In dimension two, the formula is obtained with the classical Lagrange basis in the quadratic case and with the Bézier basis in dimension three. These two formulas are then generalized to arbitrary polynomial degrees in dimension two and three with a Bézier basis. In the second part of the thesis the application of the p-adaptive scheme to the penalized Navier-Stokes equations with anisotropic mesh adaptation is presented. In practice, the p-adaptive scheme is used with the IBM-LS-AUM (Immersed Boundary Method with Level Sets and Adapted Unstructured Meshes) method. The IBM-LS-AUM allows to impose the boundary conditions with the penalization method and the mesh adaptation to the solution and to the level-set increases the accuracy of the representation of the surface and the solution around walls. When the IBM-LSAUM is combined with the p-adaptive scheme, it is possible to use high-order elements outside the zone where the penalization is applied. The method is robust as shown by the numerical applications at low to large Mach numbers and at different Reynolds in dimension two and three.; Cette thèse présente la construction d’un schéma aux Résidus Distribués p-adaptatif pour la discrétisation des équations d’Euler ainsi qu’un schéma aux Résidus Distribués hp-adaptatif pour les équations de Navier- Stokes pénalisées. On rappelle tout d’abord les équations d’Euler et de Navier-Stokes ainsi que leurs versions non dimensionnelles. Les définitions et propriétés de base des schémas aux Résidus Distribués sont ensuite présentées. On décrit alors la construction d’un schéma aux Résidus Distribués p-adaptatif pour les équations d’Euler. La construction du schéma p-adaptatif est basée sur la possibilité d’exprimer le résidu total d’un élément K de degré k (au sens où l’élément fini (K; P; Sigma ) est un élément fini de degré k) comme une somme pondérée des résidus totaux de ses sous-éléments de degré 1. La solution discrète ainsi obtenue est en général discontinue à l’interface entre un élément subdivisé et un élément non subdivisé. Ceci contredit l’hypothèse de continuité de la solution qui est utilisée pour démontrer le théorème de Lax-Wendroff discret pour les schémas aux Résidus Distribués. Cependant, on montre que cette hypothèse peut être assouplie. La conséquence pratique est que si l’on emploie des quadratures particulières dans l’implémentation numérique, on peut quand même démontrer le théorème de Lax-Wendroff discret, ce qui garantit la convergence du schéma numérique vers une solution faible des équations d’origine. Les formules qui permettent d’exprimer le résidu total comme une somme pondérée des résidus totaux des sous-éléments sont à la base de la méthode de p-adaptation présentée ici. Dans le cas quadratique, la formule est obtenue avec les classiques fonctions de base de Lagrange en dimension deux et avec des fonctions de base de Bézier en dimension trois. Ces deux formules sont ensuite généralisées à des degrés polynomiaux quelconques en dimension deux et trois avec des fonctions de base de Bézier. Dans la deuxième partie de la thèse, on présente l’application du schéma p-adaptatif aux équations pénalisées de Navier-Stokes avec adaptation de maillage anisotrope. . En pratique, on combine le schéma p-adaptatif avec la méthode IBM-LS-AUM (Immersed Boundary Method with Level Sets and Adapted Unstructured Meshes). La méthode IBM-LS-AUM permet d’imposer les conditions aux bords grâce à la méthode de pénalisation et l’adaptation anisotrope du maillage à la solution numérique et à la level-set augmente la précision de la solution et de la représentation de la surface. Une fois la méthode IBM-LS-AUM combinée avec le schéma p-adaptatif, il est alors possible d’utiliser des éléments d’ordre élevés en-dehors de la zone où la pénalisation est appliquée. La méthode est robuste comme le montrent les diverses expérimentations numériques à des vitesses faibles à élevées et à différents nombres de Reynolds.
- Published
- 2016
28. Méthode de pénalization basée sur une approche d’adaptation enformalisme résidu distribué ALE pour des objets mobiles en écoulement laminaire
- Author
-
Nouveau, Leo, Beaugendre, Heloise, Ricchiuto, M, Dobrzynski, Cecile, Abgrall, Rémi, Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts (CARDAMOM), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Polytechnique de Bordeaux, Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Institut Polytechnique de Bordeaux (Bordeaux INP), Universität Zürich [Zürich] = University of Zurich (UZH), INRIA Bordeaux, équipe CARDAMOM, PLAFRIM-CPU-MCIA, European Project: 605180,EC:FP7:TPT,FP7-AAT-2013-RTD-1,STORM(2013), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Residual Distribution Schemes ,ALE ,Pénalisation ,Schémas au résidu distribué ,mesh adaptation ,Adaptation de maillage ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,Penalization - Abstract
The coupling of anisotropic unstructured mesh adaptation techniques with an immersed boundary method (IBM) called penalization is studied for time dependent flow simulations involving moving objects. To extend Residual Distribution (RD) method to the penalized Navier Stokes equations, a new formulation based on a Strang splitting is developed. To reduce the error on solid boundaries, unstructured mesh adaptation based on an elasticity model is used. Keeping a constant connectivity, the mesh evolves in time according to the solid position, and the new formulation is proposed in an ALE framework.; Le couplage des techniques d’adaptation de maillages non structurés anisotropes avec une méthode de frontière immergée (IBM) appelée Pénalization est étudié pour des simulations instationnaires impliquant des objents en mouvement. Pour étendre les méthodes de distribution du résidu (RD) aux équations de Navier Stokes pénalisées, une nouvelle formulation basée sur un splitting de Strang est développée. Pour réduire l’erreur sur les frontières du solide, une adaptation de maillage non structuré est utilisée, basée sur un modèle d’élasticité. Gardant une connectivité constante, le maillage évolue en temps en accord avec la position du solide, et la nouvelle formulation est proposée dans un formalisme ALE.
- Published
- 2016
29. An adaptive, residual based splitting approach for the time dependent penalized Navier Stokes equations
- Author
-
Nouveau, Léo, Beaugendre, Heloise, Dobrzynski, Cecile, Abgrall, Remi, Ricchiuto, Mario, Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts (CARDAMOM), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Polytechnique de Bordeaux (Bordeaux INP), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Universität Zürich [Zürich] = University of Zurich (UZH), PLAFRIM-CPU-MCIA, European Project: 605180,EC:FP7:TPT,FP7-AAT-2013-RTD-1,STORM(2013), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
r adaptation ,Penalization Methods ,Immersed boundary method IBM ,Residual distribution schemes ,ALE Arbitrtary Lagrangian Eulerian ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation - Abstract
International audience; The coupling of anisotropic unstructured mesh adaptation techniques with immersed boundary method (IBM) is studied for time dependent flow simulations involving moving objects.This work is incorporated within the framework of the European STORM project, with the aim (among others) to improve accuracy of simulation tools for ice shedding trajectories. The moving objects considered here are ice blocks detached from the aircraft after the use of a de-icing system. Their trajectories are required to predict if sensitive parts of the propulsive system could be damaged.The starting point of our work is an IBM method known as penalization introduced by Brinkmann in 1947 for a swarm of particles. In this approach a source term is added to the NS equations to account for the momentum defect related to the movement of the body, and representative of the forces exchanged between the fluid and the solid.We propose a complete study for solving unsteady penalized equations based on a Strang splitting approach. It allows to solve separately the NS part of the equations and the penalization part with a global second order accuracy in space and time. This approach has three main advantages. First, because of time step restriction, penalization has to be solved implicitly and therefore, the splitting allows flexibility in the choice of the scheme for the NS part (explicit scheme for instance, under condition of second order accuracy). Secondly, force computations can be performed using the change of momentum technique presented in. Finally, this splitting leads to a point by point resolution of the penalized part implying nomatrix inversion, this matrix being potentially ill conditioned owing to the penalty parameter.To reduce the error on solid boundaries typically associated to IBM methods, we use unstructured mesh adaptation techniques. We present results of solids moved by a flow which requires a moving mesh in order to keep this adaptation. Thus, ALE residual distribution schemes areemployed for solving the NS part of the splitting, combined to an exact solution of the ordinary differential equationsrunning the penalized part (over an asymptotic approximation with respect to the penalty parameter).
- Published
- 2016
30. An ALE residual distribution approach applied to the penalized Navier Stokes equations on adapted grids for moving solids
- Author
-
Nouveau, Léo, Beaugendre, Heloise, Dobrzynski, Cecile, Abgrall, Remi, Ricchiuto, Mario, Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts (CARDAMOM), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Polytechnique de Bordeaux (Bordeaux INP), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Universität Zürich [Zürich] = University of Zurich (UZH), PLAFRIM-CPU-MCIA, European Project: 605180,EC:FP7:TPT,FP7-AAT-2013-RTD-1,STORM(2013), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
r adaptation ,Penalization Methods ,FSI Interaction Fluides Structures ,Immersed boundary method IBM ,Residual distribution schemes ,ALE Arbitrtary Lagrangian Eulerian ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation - Abstract
National audience; In this work, we propose to study the coupling of unstructured mesh adaptation techniques with immersed boundary method (IBM) involving moving objects. The starting point is an IBM known as penalization, introduced by Brinkmann in 1947 for a swarm of particles. A source term is added to the usual Navier Stokes (NS) equations accounting for the boundary conditions.A Strang Splitting approach is employed to solve separately the NS part and the penalized part of the equations. It allows to remove the time step restriction known for penalization while using an explicit scheme, but conserving a global second order accuracy in time. In addition, forces computation can be performed using the method proposed on structured grids. Finally, this approach leads to a pointby point resolution of the ordinary differential equation (ODE) ruling the penalized part, implying no matrix inversion.To reduce the error on solid boundaries typically associated to IBM, an elasticity based adaptation technique is employed. As this approach conserves mesh connectivity, the RDS are presented in an ALE framework. Those schemes are combined to an exact solution of the ODE governing the penalized part of the equations (over an asymptotic approximation with respect to the penalty parameter).
- Published
- 2016
31. Residual distribution schemes for advection and advection–diffusion problems on quadrilateral cells
- Author
-
P. De Palma, Michele Napolitano, Giuseppe Pascazio, and D. T. Rubino
- Subjects
Convection ,Numerical Analysis ,Quadrilateral ,Physics and Astronomy (miscellaneous) ,Discretization ,Advection ,Applied Mathematics ,steady scalar conservation law ,Upwind scheme ,Geometry ,Dissipation ,truncation error analysis ,Residual ,Fourier analysis ,Computer Science Applications ,Computational Mathematics ,symbols.namesake ,Modeling and Simulation ,symbols ,Applied mathematics ,Residual distribution schemes ,Mathematics - Abstract
This paper provides a study of some difficulties arising when extending residual distribution schemes for scalar advection and advection-diffusion problems from triangular grids to quadrilateral ones. The Fourier and truncation error analyses on a structured mesh are employed and a generalized modified wavenumber is defined, which provides a general framework for the multidimensional analysis and comparison of different schemes. It is shown that, for the advection equation, linearity preserving schemes for quadrilaterals provide lower dissipation with respect to their triangle-based counterparts and very low or no damping for high frequency Fourier modes on structured grids; therefore, they require an additional artificial dissipation term for damping marginally stable modes in order to be employed with success for pure advection problems. In the case of advection-diffusion problems, a hybrid approach using an upwind residual distribution scheme for the convective fluctuation and any other scheme for the diffusion term is only first-order accurate. On the other hand, distributing the entire residual by an upwind scheme provides second-order accuracy; however, such an approach is unstable for diffusion dominated problems, since residual distribution schemes are characterized by undamped modes associated with the discretization of the diffusive fluctuation. The present analysis allows one to determine the conditions for a stable hybrid approach to be second-order accurate and to design an optimal scheme having minimum dispersion error on a nine-point stencil. Well-documented testcases for advection and advection-diffusion problems are used to compare the accuracy properties of several schemes.
- Published
- 2006
- Full Text
- View/download PDF
32. Assessment of heat flux prediction capabilities of residual distribution method: Application to atmospheric entry problems
- Author
-
Garicano Mena, Jesus, Pepe, Raffaele, Lani, Andrea, Deconinck, Herman, Garicano Mena, Jesus, Pepe, Raffaele, Lani, Andrea, and Deconinck, Herman
- Abstract
In the present contribution we evaluate the heat flux prediction capabilities of second-order accurate Residual Distribution (RD) methods in the context of atmospheric (re-)entry problems around blunt bodies. Our departing point is the computation of subsonic air flows (with air modeled either as an inert ideal gas or as chemically reacting and possibly out of thermal equilibrium gas mixture) around probe-like geometries, as those typically employed into high enthalpy wind tunnels. We confirm the agreement between the solutions obtained with the RD method and the solutions computed with other Finite Volume (FV) based codes. However, a straightforward application of the same numerical technique to hypersonic cases involving strong shocks exhibits severe deficiencies even on a geometry as simple as a 2D cylinder. In an attempt to mitigate this problem, we derive new variants of RD schemes. A comparison of these alternative strategies against established ones allows us to derive a diagnose for the shortcomings observed in the traditional RD schemes., SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2015
33. Schémas d'ordre élevé distribuant le résidu pour la résolution des équations de Navier-Stokes et Navier-Stokes moyennées (RANS)
- Author
-
De Santis, Dante, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems (BACCHUS), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux I, Rémi Abgrall, Mario Ricchiuto, Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Inria Bordeaux - Sud-Ouest, and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
Equations RANS ,Schéma d’ordre très élevé ,Méthodes implicites ,Problèmes d’advection-diffusion ,RANS equations ,Equations de Spalart-Allmaras ,Schéma aux Résidus Distribués ,Ecoulements compressibles ,High-order methods ,[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] ,Implicit methods ,Compressible flows ,Residual Distribution schemes ,Gradient reconstruction ,Spalart-Allmaras equation ,Reconstruction du gradient ,Advection-diffusion problems - Abstract
The construction of compact high-order Residual Distribution schemes for the discretizationof steady multidimensional advection-diffusion problems on unstructuredgrids is presented. Linear and non-linear scheme are considered. A piecewise continuouspolynomial approximation of the solution is adopted and a gradient reconstructionprocedure is used in order to have a continuous representation of both thenumerical solution and its gradient. It is shown that the gradient must be reconstructedwith the same accuracy of the solution, otherwise the formal accuracy ofthe numerical scheme is lost in applications in which diffusive effects prevail overthe advective ones, and when advection and diffusion are equally important. Thenthe method is extended to systems of equations, with particular emphasis on theNavier-Stokes and RANS equations. The accuracy, efficiency, and robustness of theimplicit RD solver is demonstrated using a variety of challenging aerodynamic testproblems.; Cette thèse présente la construction de schémas distribuant le résidu (RD) d'ordre très élevés, pour la discrétisation d'équations d'advection-diffusion multidimensionnelles et stationnaires sur maillages non structurés. Des schémas linéaires ainsi que des schémas non linéaires sont considérés. Une approximation de la solution polynomiale par morceaux et continue sur chaque élément est adoptée, de plus une procédure de reconstruction du gradient que celle de la solution numérique est utilisée afin d'avoir une représentation continue de la solution numérique et de son gradient. Il est montré que le gradient doit être reconstruit avec la même précision de la solution, sans quoi la précision formel du schéma numérique est perdue dans les cas où les effets de diffusion prévalent sur les effets d'advection, et aussi quand l'advection et la diffusion sont également importants. Ensuite, la méthode est étendue à des systèmes d'équations, en particulier aux équations de Navier-Stokes et aux équations RANS. La précision, l'efficacité et la robustesse du solveur RD implicite sont démontrées sur plusieurs cas tests.
- Published
- 2013
34. Numerical approximation of parabolic problems by means of residual distribution schemes
- Author
-
Abgrall, Remi, Baurin, Guillaume, Krust, Arnaud, De Santis, Dante, Ricchiuto, Mario, Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems (BACCHUS), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), FP7 STREP IDIHOM, INRIA, European Project: 226316,EC:FP7:ERC,ERC-2008-AdG,ADDECCO(2008), Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
residual distribution schemes ,Convection diffusion ,non structured meshes ,ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.8: Partial Differential Equations/G.1.8.3: Finite element methods ,ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.8: Partial Differential Equations/G.1.8.10: Parabolic equations ,finite element methods ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] - Abstract
We are interested in the numerical approximation of steady scalar convection diffusion problems by mean of high order schemes called Residual Distribution (RD). In the inviscid case, one can develop non linear RD that are non oscillatory, even in the case of very strong shocks, while having the most possible compact stencil, on hybrid unstructured meshes. This paper proposes and compare several extension of these schemes for the convection diffusion problem. This methodology, in particular in term of accuracy, is evaluated on several problems, some of which having exact solutions.; Nous nous intéressons à l'approximation numérique des problèmes de convection diffusion stationnaires au moyen de schémas distribuant le résidu d'ordre élevé. Dans le cas sans viscosité, on peut développer des schémas distriuant le résidu on linéaires qui sont non oscillant même dans le cas de chocs très forts, tout en ayant le stencil le plus compact possible, sur des maillages non struturés hybrides. Dans ce papier, on propose, et compare, plusieurs extensions de ce s méthodes dans le cas de problèmes de convection diffusion.
- Published
- 2011
35. Development of a high-order residual distribution method for Navier-Stokes and RANS equations
- Author
-
De Santis, Dante, Abgrall, Rémi, Ricchiuto, Mario, Couaillier, Vincent, Müller, Bernhard, Azaïez, Mejdi, Deconinck, Herman, Farhat, Charbel, Rémi Abgrall, Mario Ricchiuto, Mejdi Azaïez [Président], Herman Deconinck [Rapporteur], Charbel Farhat [Rapporteur], Vincent Couaillier, Bernhard Müller, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems (BACCHUS), Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), and Université Sciences et Technologies - Bordeaux I
- Subjects
Equations RANS ,Schéma d’ordre très élevé ,Méthodes implicites ,Problèmes d’advection-diffusion ,RANS equations ,Equations de Spalart-Allmaras ,Schéma aux Résidus Distribués ,Ecoulements compressibles ,High-order methods ,[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] ,Implicit methods ,Compressible flows ,Residual Distribution schemes ,Gradient reconstruction ,Spalart-Allmaras equation ,Reconstruction du gradient ,Advection-diffusion problems - Abstract
The construction of compact high-order Residual Distribution schemes for the discretizationof steady multidimensional advection-diffusion problems on unstructuredgrids is presented. Linear and non-linear scheme are considered. A piecewise continuouspolynomial approximation of the solution is adopted and a gradient reconstructionprocedure is used in order to have a continuous representation of both thenumerical solution and its gradient. It is shown that the gradient must be reconstructedwith the same accuracy of the solution, otherwise the formal accuracy ofthe numerical scheme is lost in applications in which diffusive effects prevail overthe advective ones, and when advection and diffusion are equally important. Thenthe method is extended to systems of equations, with particular emphasis on theNavier-Stokes and RANS equations. The accuracy, efficiency, and robustness of theimplicit RD solver is demonstrated using a variety of challenging aerodynamic testproblems.; Cette thèse présente la construction de schémas distribuant le résidu (RD) d'ordre très élevés, pour la discrétisation d'équations d'advection-diffusion multidimensionnelles et stationnaires sur maillages non structurés. Des schémas linéaires ainsi que des schémas non linéaires sont considérés. Une approximation de la solution polynomiale par morceaux et continue sur chaque élément est adoptée, de plus une procédure de reconstruction du gradient que celle de la solution numérique est utilisée afin d'avoir une représentation continue de la solution numérique et de son gradient. Il est montré que le gradient doit être reconstruit avec la même précision de la solution, sans quoi la précision formel du schéma numérique est perdue dans les cas où les effets de diffusion prévalent sur les effets d'advection, et aussi quand l'advection et la diffusion sont également importants. Ensuite, la méthode est étendue à des systèmes d'équations, en particulier aux équations de Navier-Stokes et aux équations RANS. La précision, l'efficacité et la robustesse du solveur RD implicite sont démontrées sur plusieurs cas tests.
36. A method of hp-adaptation for Residual Distribution schemes
- Author
-
Viville, Quentin, Rémi Abgrall, Héloïse Beaugendre, Frédéric Hecht [Président], Boniface Nkonga [Rapporteur], Cécile Dobrzynski, Adam Larat, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria), and Université de Bordeaux
- Subjects
Anisotropic mesh adaptation ,Schémas aux Résidus Distribués ,Euler equations ,Équations de Navier-Stokes ,Hp-adaptation ,High-order methods ,[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] ,Adaptation de maillage anisotrope ,Écoulements compressibles ,Compressible flows ,Residual Distribution schemes ,Navier-Stokes equations ,P-adaptation ,Méthodes d’ordre élevé ,Équations d’Euler - Abstract
This thesis presents the construction of a p-adaptive Residual Distribution scheme for the steady Euler equations and a hp-adaptive Residual Distribution scheme for the steady penalized Navier-Stokes equations in dimension two and three. The Euler and Navier-Stokes equations are recalled along with their non dimensional versions. The basis definitions and properties of the steady Residual Distribution schemes are presented. Then, the construction of a p-adaptive Residual Distribution scheme for the Euler equations is considered. The construction of the p-adaptive scheme is based upon the expression of the total residual of an element of a given degree k (in the Finite Element sense) into the total residuals of its linear sub-elements. The discrete solution obtained with the p-adaptive scheme is then a one degree polynomial in the divided elements and a k-th degree polynomial in the undivided ones. Therefore, the discrete solution is in general discontinuous at the interface between a divided element and an undivided one. This is in apparent contradiction with the continuity assumption used in general to demonstrate the discrete Lax-Wendroff theorem for Residual Distribution schemes. However, as we show in this work, this constrain can be relaxed. The consequence is that if special quadrature formulas are employed in the numerical implementation, the discrete Lax-Wendroff theorem can still be proved, which guaranties the convergence of the p-adaptive scheme to a weak solution of the governing equations. The formulas that express the total residual into the combination of the total residuals of the sub-elements are central to the method. In dimension two, the formula is obtained with the classical Lagrange basis in the quadratic case and with the Bézier basis in dimension three. These two formulas are then generalized to arbitrary polynomial degrees in dimension two and three with a Bézier basis. In the second part of the thesis the application of the p-adaptive scheme to the penalized Navier-Stokes equations with anisotropic mesh adaptation is presented. In practice, the p-adaptive scheme is used with the IBM-LS-AUM (Immersed Boundary Method with Level Sets and Adapted Unstructured Meshes) method. The IBM-LS-AUM allows to impose the boundary conditions with the penalization method and the mesh adaptation to the solution and to the level-set increases the accuracy of the representation of the surface and the solution around walls. When the IBM-LSAUM is combined with the p-adaptive scheme, it is possible to use high-order elements outside the zone where the penalization is applied. The method is robust as shown by the numerical applications at low to large Mach numbers and at different Reynolds in dimension two and three.; Cette thèse présente la construction d’un schéma aux Résidus Distribués p-adaptatif pour la discrétisation des équations d’Euler ainsi qu’un schéma aux Résidus Distribués hp-adaptatif pour les équations de Navier- Stokes pénalisées. On rappelle tout d’abord les équations d’Euler et de Navier-Stokes ainsi que leurs versions non dimensionnelles. Les définitions et propriétés de base des schémas aux Résidus Distribués sont ensuite présentées. On décrit alors la construction d’un schéma aux Résidus Distribués p-adaptatif pour les équations d’Euler. La construction du schéma p-adaptatif est basée sur la possibilité d’exprimer le résidu total d’un élément K de degré k (au sens où l’élément fini (K; P; Sigma ) est un élément fini de degré k) comme une somme pondérée des résidus totaux de ses sous-éléments de degré 1. La solution discrète ainsi obtenue est en général discontinue à l’interface entre un élément subdivisé et un élément non subdivisé. Ceci contredit l’hypothèse de continuité de la solution qui est utilisée pour démontrer le théorème de Lax-Wendroff discret pour les schémas aux Résidus Distribués. Cependant, on montre que cette hypothèse peut être assouplie. La conséquence pratique est que si l’on emploie des quadratures particulières dans l’implémentation numérique, on peut quand même démontrer le théorème de Lax-Wendroff discret, ce qui garantit la convergence du schéma numérique vers une solution faible des équations d’origine. Les formules qui permettent d’exprimer le résidu total comme une somme pondérée des résidus totaux des sous-éléments sont à la base de la méthode de p-adaptation présentée ici. Dans le cas quadratique, la formule est obtenue avec les classiques fonctions de base de Lagrange en dimension deux et avec des fonctions de base de Bézier en dimension trois. Ces deux formules sont ensuite généralisées à des degrés polynomiaux quelconques en dimension deux et trois avec des fonctions de base de Bézier. Dans la deuxième partie de la thèse, on présente l’application du schéma p-adaptatif aux équations pénalisées de Navier-Stokes avec adaptation de maillage anisotrope. . En pratique, on combine le schéma p-adaptatif avec la méthode IBM-LS-AUM (Immersed Boundary Method with Level Sets and Adapted Unstructured Meshes). La méthode IBM-LS-AUM permet d’imposer les conditions aux bords grâce à la méthode de pénalisation et l’adaptation anisotrope du maillage à la solution numérique et à la level-set augmente la précision de la solution et de la représentation de la surface. Une fois la méthode IBM-LS-AUM combinée avec le schéma p-adaptatif, il est alors possible d’utiliser des éléments d’ordre élevés en-dehors de la zone où la pénalisation est appliquée. La méthode est robuste comme le montrent les diverses expérimentations numériques à des vitesses faibles à élevées et à différents nombres de Reynolds.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.