33 results on '"semantic measures"'
Search Results
2. An Empirical Study on Effect of Semantic Measures in Cross-Domain Recommender System in User Cold-Start Scenario
- Author
-
Wang, Yuhan, Xie, Qing, Li, Lin, Liu, Yongjian, Goos, Gerhard, Founding Editor, Hartmanis, Juris, Founding Editor, Bertino, Elisa, Editorial Board Member, Gao, Wen, Editorial Board Member, Steffen, Bernhard, Editorial Board Member, Woeginger, Gerhard, Editorial Board Member, Yung, Moti, Editorial Board Member, Qiu, Han, editor, Zhang, Cheng, editor, Fei, Zongming, editor, Qiu, Meikang, editor, and Kung, Sun-Yuan, editor
- Published
- 2021
- Full Text
- View/download PDF
3. Un enfoque semántico en la seleccion de características basadas en léxico para la detección de emociones.
- Author
-
González-Guerra, Harold, Simón-Cuevas, Alfredo, Perea-Ortega, José M., and Olivas, José A.
- Subjects
EMOTION recognition ,SEMANTIC computing ,FEATURE selection ,SENTIMENT analysis ,TASK analysis - Abstract
Copyright of Procesamiento del Lenguaje Natural is the property of Sociedad Espanola para el Procesamiento del Lenguaje Natural and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2021
- Full Text
- View/download PDF
4. Graph-Based Text Modeling: Considering Mathematical Semantic Linking to Improve the Indexation of Arabic Documents
- Author
-
El Bazzi, Mohamed Salim, Mammass, Driss, Zaki, Taher, Ennaji, Abdelatif, Hutchison, David, Series Editor, Kanade, Takeo, Series Editor, Kittler, Josef, Series Editor, Kleinberg, Jon M., Series Editor, Mattern, Friedemann, Series Editor, Mitchell, John C., Series Editor, Naor, Moni, Series Editor, Pandu Rangan, C., Series Editor, Steffen, Bernhard, Series Editor, Terzopoulos, Demetri, Series Editor, Tygar, Doug, Series Editor, Weikum, Gerhard, Series Editor, Mansouri, Alamin, editor, El Moataz, Abderrahim, editor, Nouboud, Fathallah, editor, and Mammass, Driss, editor
- Published
- 2018
- Full Text
- View/download PDF
5. Mining interesting actionable patterns for web service composition.
- Author
-
Chakravarthy, D. Gowtham and Kannimuthu, S.
- Abstract
Web services are the way of integrating the web related applications using the XML, SOAP, WSDL and UDDI protocols in a standardized manner. Web service composition is the primary task of composing variety of different services on composite applications. Effective web service composition is not an easy task. This paper proposes a novel framework for extracting the interesting actionable patterns for effective web services for composition. This algorithm utilizes utility based data mining for extracting high utility actionable patterns for web service composition. Experimental results show that HUI-Miner approach outperforms well in terms of running time efficiency for our framework. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
6. Ontology Driven Feature Engineering for Opinion Mining
- Author
-
Shafaq Siddiqui, M. Abdul Rehman, Sher Muhammad Doudpota, and Ahmad Waqas
- Subjects
Feature engineering ,dimension reduction ,semantic measures ,ontology ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 - Abstract
In the process of knowledge discovery, the reliability of results depends upon the effectiveness of attributes selected for decision. The curse of dimensionality refers to the phenomenon in which the excessive number of dimensions affect the analysis. In order to eradicate the curse of dimensionality in text analysis, we are proposing an ontology-based semantic measure for intelligent selection/reduction of features. Among the various text mining techniques, ontology-based mining has a significant contribution to the field. The ontology-based semantic measures, which are mathematical models used to find the similarity between various concepts in the ontology, have made a significant contribution to feature engineering. The proposed measure is an amalgamation of semantic similarity, relatedness, and distance. The measure allows performing an in-depth analysis of various semantic relationships between concepts of the English language. The performance of the measure was evaluated against benchmarked dimension reduction techniques such as PCA. The results show improvement by reducing the size of dimensions up to 35%. The results were further evaluated by training a classifier to validate that the features are not creating any underfit/overfit model.
- Published
- 2019
- Full Text
- View/download PDF
7. Semantic-driven bibliometric techniques for co-citation analysis.
- Author
-
Hadj Taieb, Mohamed Ali, Ben Aouicha, Mohamed, and Turki, Houcemeddine
- Abstract
Co-citation analysis can be exploited as a bibliometric technique used for mining information on the relationships between scientific papers. Proposed methods rely, however, on co-citation counting techniques that slightly take the semantic aspect into consideration. The present study proposes a semantic driven bibliometric techniques for co-citation analysis through measuring the semantic similarity (SS) between the titles of co-cited papers. Several computational measures rely on knowledge resources to quantify the semantic similarity, such as the WordNet “is a” taxonomy. Our proposal analyzes the SS between the titles of co-cited papers using word-based SS measures. Two major analytical experiments are performed: the first includes the benchmarks designed for testing word-based SS measures through the correlation coefficients for expressing the measures efficiency; the second exploits the dataset DBLP1 citation network. As a result, the semantic similarity measures shows good performance in relation with the human judgements compared to automatic provided estimated similarities. Therefore, the lexical similarity can be consequently used for the automatic assessment of similarity between co-cited papers. The analysis of highly repeated co-citations demonstrates that the different SS measures display almost similar behaviours, with slight differences due to the distribution of the provided SS values. Furthermore, we note a low percentage of similar referred papers into the co-citations. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
8. Semantic Measures: How Similar? How Related?
- Author
-
Costa, Teresa, Leal, José Paulo, Hutchison, David, Series editor, Kanade, Takeo, Series editor, Kittler, Josef, Series editor, Kleinberg, Jon M., Series editor, Mattern, Friedemann, Series editor, Mitchell, John C., Series editor, Naor, Moni, Series editor, Pandu Rangan, C., Series editor, Steffen, Bernhard, Series editor, Terzopoulos, Demetri, Series editor, Tygar, Doug, Series editor, Weikum, Gerhard, Series editor, Bozzon, Alessandro, editor, Cudre-Maroux, Philippe, editor, and Pautasso, Cesare, editor
- Published
- 2016
- Full Text
- View/download PDF
9. Quantitative dynamics of design thinking and creativity perspectives in company context
- Author
-
Georgiev, G. V. (Georgi V.), Georgiev, D. D. (Danko D.), Georgiev, G. V. (Georgi V.), and Georgiev, D. D. (Danko D.)
- Abstract
This study is intended to provide in-depth insights into how design thinking and creativity issues are understood and possibly evolve in the course of design discussions in a company context. For that purpose, we use the seminar transcripts of the Design Thinking Research Symposium 12 (DTRS12) dataset “Tech-centred Design Thinking: Perspectives from a Rising Asia,” which are primarily concerned with how Korean companies implement design thinking and what role designers currently play. We employed a novel method of information processing based on constructed dynamic semantic networks to investigate the seminar discussions according to company representatives and company size. We compared the quantitative dynamics in two seminars: the first involved managerial representatives of four companies, and the second involved specialized designers and management of a design center of single company. On the basis of dynamic semantic networks, we quantified the changes in four semantic measures—abstraction, polysemy, information content, and pairwise word similarity—in chronologically reconstructed individual design-thinking processes. Statistical analyses show that design thinking in the seminar with four companies, exhibits significant differences in the dynamics of abstraction, polysemy, and information content, compared to the seminar with the design center of single company. Both the decrease in polysemy and abstraction and the increase in information content in the individual design-thinking processes in the seminar with four companies indicate that design managers are focused on more concrete design issues, with more information and less ambiguous content to the final design product. By contrast, specialized designers manifest more abstract thinking and appear to exhibit a slightly higher level of divergence in their design processes. The results suggest that design thinking and creativity issues are articulated differently depending on designer roles and the co
- Published
- 2023
10. Investigating Validity of Semantic Measures vs Rating Scales in Assessing Personality
- Author
-
Gustavsson, Sofie, Plate, Henrietta, Gustavsson, Sofie, and Plate, Henrietta
- Abstract
Within personality research, self-report questionnaires are a common approach. This study takes aim at investigating whether self-report questionnaires are enough, or if semantic measures, through Natural Language Processing, could be a substitute or complementary method, in assessing personality. Based on the Five Factor Model of personality, this study has been divided into two phases. Participants originating from the U.S. were instructed to either describe and rate their own or someone else's personality (Phase 1, N=264), or read personality narratives from Phase 1 (Phase 2, N=399) then, in both phases, participants were asked to answer a semantic question as well as a IPIP-NEO rating scale. Prediction scores from the two phases were used to analyze semantic measures in comparison to rating scales. The results suggest that semantic measures, on their own, categorize personality traits more accurately (53%) than rating scales (44%). To conclude, complementary approaches while assessing personality have shown to be of great value. Future research would be benefitted by investigating the possibility of applying this method in other fields of psychology, in favor of further assessing the method's validity, and determining whether it can offer novel understandings of constructs.
- Published
- 2023
11. Using Asymmetric Associations for Commonsense Causality Detection
- Author
-
Jabeen, Shahida, Gao, Xiaoying, Andreae, Peter, Hutchison, David, Series editor, Kanade, Takeo, Series editor, Kittler, Josef, Series editor, Kleinberg, Jon M., Series editor, Kobsa, Alfred, Series editor, Mattern, Friedemann, Series editor, Mitchell, John C., Series editor, Naor, Moni, Series editor, Nierstrasz, Oscar, Series editor, Pandu Rangan, C., Series editor, Steffen, Bernhard, Series editor, Terzopoulos, Demetri, Series editor, Tygar, Doug, Series editor, Weikum, Gerhard, Series editor, Goebel, Randy, Series editor, Tanaka, Yuzuru, Series editor, Wahlster, Wolfgang, Series editor, Siekmann, Jörg, Series editor, Pham, Duc-Nghia, editor, and Park, Seong-Bae, editor
- Published
- 2014
- Full Text
- View/download PDF
12. Semantic Measures Based on RDF Projections: Application to Content-Based Recommendation Systems : (Short Paper)
- Author
-
Harispe, Sébastien, Ranwez, Sylvie, Janaqi, Stefan, Montmain, Jacky, Hutchison, David, editor, Kanade, Takeo, editor, Kittler, Josef, editor, Kleinberg, Jon M., editor, Mattern, Friedemann, editor, Mitchell, John C., editor, Naor, Moni, editor, Nierstrasz, Oscar, editor, Pandu Rangan, C., editor, Steffen, Bernhard, editor, Sudan, Madhu, editor, Terzopoulos, Demetri, editor, Tygar, Doug, editor, Vardi, Moshe Y., editor, Weikum, Gerhard, editor, Meersman, Robert, editor, Panetto, Hervé, editor, Dillon, Tharam, editor, Eder, Johann, editor, Bellahsene, Zohra, editor, Ritter, Norbert, editor, De Leenheer, Pieter, editor, and Dou, Deijing, editor
- Published
- 2013
- Full Text
- View/download PDF
13. RETRACTED ARTICLE: Mining interesting actionable patterns for web service composition
- Author
-
Chakravarthy, D. Gowtham and Kannimuthu, S.
- Published
- 2021
- Full Text
- View/download PDF
14. Quantitative dynamics of design thinking and creativity perspectives in company context.
- Author
-
Georgiev, Georgi V. and Georgiev, Danko D.
- Subjects
DESIGN thinking ,DYNAMICS ,ABSTRACT thought ,BUSINESS size ,CREATIVE ability ,KOREAN language - Abstract
This study is intended to provide in-depth insights into how design thinking and creativity issues are understood and possibly evolve in the course of design discussions in a company context. For that purpose, we use the seminar transcripts of the Design Thinking Research Symposium 12 (DTRS12) dataset "Tech-centred Design Thinking: Perspectives from a Rising Asia," which are primarily concerned with how Korean companies implement design thinking and what role designers currently play. We employed a novel method of information processing based on constructed dynamic semantic networks to investigate the seminar discussions according to company representatives and company size. We compared the quantitative dynamics in two seminars: the first involved managerial representatives of four companies, and the second involved specialized designers and management of a design center of single company. On the basis of dynamic semantic networks, we quantified the changes in four semantic measures—abstraction, polysemy, information content, and pairwise word similarity—in chronologically reconstructed individual design-thinking processes. Statistical analyses show that design thinking in the seminar with four companies, exhibits significant differences in the dynamics of abstraction, polysemy, and information content, compared to the seminar with the design center of single company. Both the decrease in polysemy and abstraction and the increase in information content in the individual design-thinking processes in the seminar with four companies indicate that design managers are focused on more concrete design issues, with more information and less ambiguous content to the final design product. By contrast, specialized designers manifest more abstract thinking and appear to exhibit a slightly higher level of divergence in their design processes. The results suggest that design thinking and creativity issues are articulated differently depending on designer roles and the company size. • Design conversations are analyzed with an information-processing method based on semantic networks. • Design thinking in Korean companies is understood based on temporal dynamics of semantic networks. • Dynamic changes in abstraction, polysemy, information content and semantic similarity are quantified. • Individual design thinking is articulated differently depending on the designer role and company size. • AI co-creative partner programs employing semantic networks could assist the work of human designers. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
15. A semantic approach in the lexicon-based feature selection for emotion detection
- Author
-
González-Guerra, Harold, Simón-Cuevas, Alfredo, Perea Ortega, José Manuel, and Olivas, José Ángel
- Subjects
Detección de emociones ,Emotion detection ,Selección de características ,Feature selection ,Lenguajes y Sistemas Informáticos ,Medidas semánticas ,Semantic measures - Abstract
La detección de emociones es una tarea del análisis de sentimientos que trata la extracción y el análisis de las emociones en textos. Reconocer emociones implícitas es uno de los principales desafíos en enfoques basados en palabras claves o lexicones. Este trabajo presenta un enfoque híbrido de detección de emociones, que combina la selección de características relevantes de emoción basada en un lexicón, con un enfoque clásico de aprendizaje para determinar la emoción. El proceso de selección de características propuesto se centra en capturar el significado emocional del texto mediante el cálculo de la relación semántica entre su contenido y el vocabulario del lexicón, con el objetivo de incrementar el reconocimiento de emociones implícitas. La solución propuesta fue evaluada en la clasificación de emociones en tweets en español incluidos en el corpus AIT, con diferentes alternativas para computar la relación semántica y varios algoritmos de clasificación, obteniéndose resultados muy prometedores. Emotion detection is a task of sentiment analysis that deals with the extraction and analysis of emotions in texts. Recognizing implicit emotions is one of the main challenges in keyword or lexicon-based approaches. This paper presents a hybrid emotion detection approach, which combines lexicon-based emotion-relevant feature selection with a classical learning-based approach to determine the emotion. The proposed feature selection process focuses on capturing the emotional meaning of the text by computing the semantic relationship between its content and the lexicon vocabulary, with the goal of increasing implicit emotion recognition. The proposed solution was evaluated on the classification of emotions in Spanish tweets included in the AIT corpus, with different alternatives to compute the semantic relation and several classification algorithms, obtaining very promising results. Este trabajo ha sido parcialmente financiado por el Fondo Europeo de Desarrollo Regional (FEDER), la Junta de Extremadura (GR18135), y el Ministerio de Ciencia, Innovación y Universidades de España, a través del proyecto SAFER (PID2019-104735RB-C42).
- Published
- 2021
16. Design creativity and the semantic analysis of conversations in the design studio
- Author
-
Casakin, H. (Hernan), Georgiev, G. V. (Georgi V.), Casakin, H. (Hernan), and Georgiev, G. V. (Georgi V.)
- Abstract
The analysis of conversations during design activity can facilitate deeper insights into design thinking and its relation to creativity. A semantic analysis approach was employed to explore the semantic content of communication and information exchange between students and instructors. The goal was to examine design conversations in terms of abstraction, Polysemy, Information Content, and Semantic Similarity measures, and analyze their relation to the creativity of final solutions. These design outcomes were assessed according to their Originality, Usability, Feasibility, Overall Value, and Overall Creativity. Consequently, 35 design conversations from the 10th Design Thinking Research Symposium (DTRS10) dataset were analyzed. The main results showed that Information Content and Semantic Similarity predicted Originality, and Information Content alone predicted Overall Creativity. Likewise, Abstraction predicted Feasibility, while Semantic Similarity, Information Content, and Polysemy predicted Overall Value. In context of instructors, Semantic Similarity predicted Usability, and Polysemy predicted Feasibility. For students, Semantic Similarity predicted Overall Value. On the whole, Semantic Similarity and Information Content were the most prolific measures, and therefore could be considered for promoting creativity in the design studio. The implications of using support tools such as automated systems are also discussed.
- Published
- 2021
17. A study of measures for document relatedness evaluation.
- Author
-
Pyshkin, Evgeny and Klyuev, Vitaly
- Abstract
In this review paper we classified and described measures and approaches for document relatedness evaluation. For the reviewed measures we pointed out the reasons of their construction and usage limitations. We concluded this research with a discourse on challenges of the day in estimating document appropriateness in the domain of information retrieval. [ABSTRACT FROM PUBLISHER]
- Published
- 2012
18. Ontology Driven Feature Engineering for Opinion Mining
- Author
-
Ahmad Waqas, M. Abdul Rehman, Shafaq Siddiqui, and Sher Muhammad Doudpota
- Subjects
Feature engineering ,General Computer Science ,Computer science ,dimension reduction ,02 engineering and technology ,Overfitting ,Machine learning ,computer.software_genre ,Text mining ,semantic measures ,Semantic similarity ,Knowledge extraction ,0202 electrical engineering, electronic engineering, information engineering ,General Materials Science ,ontology ,business.industry ,Dimensionality reduction ,Sentiment analysis ,General Engineering ,020206 networking & telecommunications ,Ontology ,020201 artificial intelligence & image processing ,Artificial intelligence ,lcsh:Electrical engineering. Electronics. Nuclear engineering ,business ,computer ,Classifier (UML) ,lcsh:TK1-9971 ,Curse of dimensionality - Abstract
In the process of knowledge discovery, the reliability of results depends upon the effectiveness of attributes selected for decision. The curse of dimensionality refers to the phenomenon in which the excessive number of dimensions affect the analysis. In order to eradicate the curse of dimensionality in text analysis, we are proposing an ontology-based semantic measure for intelligent selection/reduction of features. Among the various text mining techniques, ontology-based mining has a significant contribution to the field. The ontology-based semantic measures, which are mathematical models used to find the similarity between various concepts in the ontology, have made a significant contribution to feature engineering. The proposed measure is an amalgamation of semantic similarity, relatedness, and distance. The measure allows performing an in-depth analysis of various semantic relationships between concepts of the English language. The performance of the measure was evaluated against benchmarked dimension reduction techniques such as PCA. The results show improvement by reducing the size of dimensions up to 35%. The results were further evaluated by training a classifier to validate that the features are not creating any underfit/overfit model.
- Published
- 2019
19. A Working Well-Being: The Individual’s Relation to Their Job Relates to Their Well-Being
- Author
-
Mårtensson, Linnea, Dolovski, Sofia, Mårtensson, Linnea, and Dolovski, Sofia
- Abstract
Work takes up a lot of our time and a third of our lives. The purpose of this study is to examine how an individual’s view of their work relates to their well-being. The study uses a survey to explore what views of the job that the participants (N = 240) have. Job satisfaction was measured with semantic measures, that is open-ended questions analysed with AI, and the Generic Job satisfaction Scale. The Satisfaction With Life Scale and the Harmony In Life Scale measured participants’ well-being. Analyses of the semantic measures showed that words such as money described job satisfaction and stress described dissatisfaction (t(2630)=46.48, p<.001). The semantic similarity scores between described personal job satisfaction and a job satisfaction word norm (participant generated text that describes high job satisfaction) correlated with the Generic Job Satisfaction scale (r = .55) the strongest; hence this can be seen as a new word-based measure of job satisfaction, as an alternative to numeric scales. The semantic similarity scores correlated significantly with all numeric scales (r = .35 to r = .55, p<.001) and word-responses significantly predicted numeric scales (r = .38 to r =.58, p<.001). Participants described their job-satisfaction with words such as rewarding, happy and challenging. The study demonstrates how a person’s view of their work is connected to their subjective well-being., Arbetet tar upp mycket av vår tid och en tredjedel av våra liv. Syftet med denna studie är att undersöka hur en individs syn på sitt arbete relaterar till deras välbefinnande. Studien använder en enkät för att undersöka vilka synpunkter på jobbet deltagarna (N = 240) har. Arbetstillfredsställelse mättes med semantiska mätningar, som är öppna frågor analyserade med AI, och med Generic Job Satisfaction Scale. Satisfaction With Life Scale och Harmony In Life Scale mätte deltagarnas välbefinnande. Analyser av de semantiska måtten visade att ord som pengar beskrev arbetstillfredsställelse och stress beskrev arbetsotillfredsställelse (t (2630) = 46,48, p <0,001). De semantiska likhetspoängen mellan beskrivna personliga arbetstillfredsställelsen och en ordnorm för arbetstillfredsställelse (text genererad av deltagare som beskriver hög arbetstillfredsställelse) korrelerade med Generic Job Satisfaction Scale(r = .55) starkast; därför kan detta ses som ett nytt ordbaserat mått på arbetstillfredsställelse, som ett alternativ till numeriska skalor. De semantiska likhetspoängen korrelerade signifikant med alla numeriska skalor (r = .35 till r = .55, p <.001) och ordsvar predicerade signifikant de numeriska skalorna (r = .38 till r = .58, p <.001). Deltagarna beskrev sin arbetstillfredsställelse med ord som givande, glad och utmanande. Studien visar hur en persons syn på sitt arbete är kopplat till deras subjektiva välbefinnande.
- Published
- 2020
20. Semantic measures in design conversations as predictors of creative outcomes in design education
- Author
-
Georgiev, G. V. (Georgi V.), Casakin, H. (Hernan), Georgiev, G. V. (Georgi V.), and Casakin, H. (Hernan)
- Abstract
The analysis of conversations maintained during the design activity can help to gain a better insight into design thinking and its relation to creativity. A semantic analysis approach was employed to inspect the content of communications and information exchange between students and instructors. The goal was to explore design conversations in terms of Abstraction, Polysemy, Information Content and Semantic Similarity measures, and analyse their relation to the creativity of final design outcomes. These were assessed according to their Originality, Usability, Feasibility, Overall Value and Overall Creativity. To this end, design conversations from the 10th Design Thinking Research Symposium (DTRS10) dataset were used. Main results show a significant relationship between Information Content and Originality and Overall Creativity. For instructors, Semantic measures were mainly related to Feasibility, whereas for students the focus was set on the Overall Value of the final solutions.
- Published
- 2020
21. S-Trans: Semantic transformation of XML healthcare data into OWL ontology
- Author
-
Thuy, Pham Thi Thu, Lee, Young-Koo, and Lee, Sungyoung
- Subjects
- *
SEMANTIC computing , *MATHEMATICAL transformations , *XML (Extensible Markup Language) , *MEDICAL care , *ONTOLOGIES (Information retrieval) , *WEB services , *HETEROGENEOUS computing - Abstract
Abstract: Most healthcare data are available in XML format, which mainly focuses on the structure level and lacks support for data representation. Therefore, a variety of medical applications and medical semantic search engines have difficulty understanding and integrating healthcare data in a highly heterogeneous environment. OWL (Web Ontology Language) and Semantic Web technologies provide an infrastructure that can solve these problems. The aim of our study is to present a mechanism to ease the interpretation and automate the semantic transformation of XML healthcare data into the OWL ontology (S-Trans), which allows an easier and better semantic communication among hospital information systems. On the basis of the XML schemas (XSD or DTD), we extract the document structure and add more descriptions for XML elements. Moreover, to classify the semantic level of duplicate elements in an XML schema, we propose novel metrics to measure the similarity between them. Experimental results show that the proposed method reliably predicts semantic similarity of duplicates and produces a better-quality OWL ontology. [Copyright &y& Elsevier]
- Published
- 2012
- Full Text
- View/download PDF
22. Text Summaries or Concept Maps: Which Better Represent Reading Text Conceptualization?
- Author
-
JOHNSON, TRISTAN E., PIRNAY-DUMMER, PABLO N., IFENTHALER, DIRK, MENDENHALL, ANNE, KARAMAN, SELIÇUK, and TENENBAUM, GERSHON
- Subjects
MENTAL representation ,LEARNING ,COGNITIVE ability ,STUDENTS ,MEMORY - Abstract
Capturing students' mental models has been proposed as a viable means to measure students' understanding and conceptualization of given learning materials. Mental models are usually represented by either short text summary or a graphical map (i.e., concept map). This study aimed attesting which learner's mental representation associates higher with three criteria: original text, expert concept map, and expert text summary. HIMATT, a mathematical framework proven to share a sound reliability of mental model in both semantic and graphical formats, was used to elicit the association between students' mental models and the three criteria reference models following studying two book chapters. The findings indicate that across all association indices, students' text summary elicitations were stronger than the students' concept map elicitations over the three criterion-reference models. Moreover, stronger similarities emerged for the four structure indices (surface, graphic, structure, and gamma) than for the three semantic indices (concept, proposition, and balance) within the text summary and concept map formats. The results are attributed to students' strong familiarity with written representation of the learning materials rather than creating concept maps. Furthermore, the results indicate that reading a text stored in long-term memory and retrieving and representing it into a concept map is harder than retrieving and representing it in a written text. Further research must clarify to what extent the practice of transforming written materials into graphical maps will improve the validity of using concept maps for mental conceptualization. [ABSTRACT FROM AUTHOR]
- Published
- 2010
23. Plats för välbefinnande - rummets påverkan på känslor, syn på välbefinnande och meningen med livet.
- Author
-
Tähtinen, Lotta, Lundell, Andreas, Tähtinen, Lotta, and Lundell, Andreas
- Abstract
Vi rör oss ständigt i offentliga rum som på olika sätt är utformade för att påverka oss. Denna studie undersöker om människors känslor, syn på välbefinnande och syn på meningen med livet påverkas av att befinna sig i olika rum, i detta fall en kyrka (N=51) och ett köpcenter (N=51). Två verktyg, semantiska mått och Positive and Negative Affect Schedule (PANAS) används för att undersöka om det finns en skillnad i vilka känslor som studiens deltagare upplever beroende på rum. Deltagarna svarade på öppna semantiska frågor med fritt valda beskrivande ord och genom att fylla i traditionella skattningsskalor i antingen en kyrka eller ett köpcentrum. Analyser genomfördes med statistik och artificiell intelligens. Det fanns en signifikant skillnad i valens, där kyrkan hade en signifikant högre positiv valens i svaren än köpcentret (t=-3,17, p=0,002, two-tailed, Cohen’s D=0,63). Deltagarnas känslor skiljde sig signifikant i de semantiska måtten och uppvisade en stor effektstorlek (t=5.43, p=0,001, Cohens D=0.76). PANAS visade inte en signifikant skillnad i positiva (t(102) =1,82, p=0,072, one-tail, Cohens D=0,37) eller negativa känslor (t (102) =-1,64, p=0,103, one-tailed, Cohens D=0,26). Denna studie indikerar att de att rum som vi befinner oss i påverkar våra känslor., We are constantly moving between environments that are designed to affect us in one way or another. The purpose of this study is to investigate if the room has an influence on people's feelings, and their views on well-being and meaning of life. In a randomised experiment, the study explores whether there is a measurable difference in the participants’ feelings and thoughts in a church (n=51) and a shopping mall (n=51). In this study, open-ended questions with word responses (semantic measures) are used together with Positive and Negative Affect Schedule (PANAS) to measure participants’ feelings. Frequentist statistics and artificial intelligence were used to analyse the data. Analyses of the semantic measures showed that words written in the church had a significantly more positive valence than words written in the shopping mall (t=-3,17, p=,002, two-tailed, Cohen’s D=0,63), and that the participants’ word responses for feelings differed significantly with a large effect size (t=5.43, p=,001, Cohen’s D=0.76). PANAS did not show any significant difference in the participants’ positive (t(102) =1,82, p=,072, one-tail, Cohens D=0,37) or negative feelings (t (102) =-1,64, p=,103, one-tailed, Cohens D=0,26). This study indicates that the rooms we spend time in has an effect on our feelings.
- Published
- 2019
24. Semantic architecture for the analysis of the academic and occupational profiles based on competencies
- Author
-
A. Gonzalez Eras and J. Aguilar Castro
- Subjects
Competency ,Fluid Flow and Transfer Processes ,Knowledge management ,Computer Networks and Communications ,business.industry ,Computer science ,Natural language processing ,Health, Toxicology and Mutagenesis ,General Engineering ,General Materials Science ,Architecture ,business ,Social Sciences (miscellaneous) ,Semantic measures - Abstract
This research shows a semantic architecture for the extraction, comparison and feedback of professional and educational competencies. The main product is a scheme that facilitates the detection of competencies based on the skills and knowledge. The scheme carries out tasks of natural language processing and of similarity calculation, among others, in order to determine the differences among the professional and educational competencies. © 2015 Alexandra González Eras and Jose Aguilar
- Published
- 2015
- Full Text
- View/download PDF
25. Contributions à l’Ingénierie des Connaissances : Construction et Validation d’Ontologie et Mesures Sémantique
- Author
-
Harzallah, Mounira, Laboratoire des Sciences du Numérique de Nantes (LS2N), IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS), Université de Nantes, Ecole Polytechnique, Mme Bénédicte Le Grand, Professeur, Université Paris 1 Panthéon - Sorbonne, Centre de Recherche en Informatique (CRI) [Examinateur], Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), and Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
- Subjects
semantic measures ,capitalisation ,capitalization ,extraction ,mesures sémantiques ,modeling ,[INFO]Computer Science [cs] ,ontology ,exploitation ,ontologie ,modélisation - Abstract
L’ingénierie des connaissances (extraction, modélisation, capitalisation, exploitation...) a connu plusieurs mutations en s’adaptant au cours du temps à l’évolution des connaissances. Elle a notamment dû prendre en compte une évolution dans le temps des ressources des connaissances (experts, livres, bases de données, réseaux sociaux, tweeters, web des données...), de leurs formes (implicite, explicite, structurée, semi ou non structurée), de leurs utilisateurs (organisation, apprenant, utilisateur du web...), des supports de leur utilisation (livres, bases de données, systèmes à bases de connaissances, applications du web sémantique...), du volume et de la vitesse de multiplication de leurs ressources, des techniques de leur extraction, des langages de leur représentation... Dans ces différentes évolutions, l’ontologie a étéreconnue comme une représentation sémantique pertinente des connaissances. Je me suis intéressée depuis plus de 13 ans, aux problématiques liées aux ontologies, à leur construction, à leur validation et à leur exploitation, en ingénierie des connaissances. Mes contributions à ce domaine s’organisent autour de 3 axes. Le premier porte sur l’ingénierie des compétences et son articulation à l’ingénierie des connaissances, avec deux contributions majeures : (1) des modèles de connaissances (i.e. une ontologie noyau des compétences basée sur le modèle CRAI (Comptency Resource Aspect Individual) et le modèle CKIM (Competency and Knowledge Integrated Model) pour une représentation intégrée des compétences et connaissances) et (2) une architecture intégrante pour l’ingénierie des compétences. Cette architecture se base sur une modélisation ontologique et fine des compétences et permet de répertorier des techniques d’ingénierie des connaissances et les ressources associées pour l’extraction et la gestion des compétences. Elle a orienté mes travaux de recherche versdeux autres axes : l’axe 2 porte sur les méthodes et techniques d’ingénierie des connaissances pour la conceptualisation et la validation d’ontologie ; l’axe 3 porte sur les mesures sémantiques de comparaison d’objets, une mesure sémantique étant une technique de cette architecture, appliquée à une ontologie pour aider à accomplir certains processus d’une organisation. Dans l’axe 2, j’ai proposé un cadre pour comparer des approches et outils de conceptualisation semi-automatique d’ontologie. J’ai développé deux approches de validation d’ontologie dans lesquelles j’ai cherché, d’une part, à coupler la validation à la conceptualisation, et d’autre part à leur intégrer des contraintes générées à partir d’une ontologie noyau formelle. La première approche est basée sur l’identification des problèmes pouvant nuire à la qualité d’une ontologie. La deuxième approche utilise des règles générées du méta-modèle d’annotation et/ou d’une ontologie noyau pour guider l’annotation d’un objet avec cette ontologie, enrichir cette ontologie et valider ces deux tâches. Ces deux approches pourraient se fusionner et s’étendre vers une approche semi-automatique de construction et validation intégrées d’ontologie, basée sur une ontologie noyau formelle.Dans l’axe 3, j’ai proposé un cadre unifiant pour la définition de trois familles de mesures sémantiques de comparaison d’objets selon leur annotation par une ontologie : un objet peut être annoté par un concept unique, un ensemble de concepts ou un graphe sémantique d’une ontologie. En plus, ce cadre aide à analyser les résultats des mesures et à choisir une mesure adéquate pour une ontologie et une applicationdonnées. Il se caractérise par l’utilisation d’une approche similaire pour l’approximation du contenu informationnel apporté par chaque type d’annotation, le contenu informationnel étant un élément principal et commun à la définition de ces trois familles de mesures.. Dans ce mémoire de HDR, je présente ces différentes contributions, en les positionnant par rapport à l’évolution des connaissances et par rapport à des travaux connexes de l’état de l’art. Je discute en conclusion la pertinence de mes travaux par rapport au challenge des masses de données et je présente mon projet de recherche et des perspectives liées à ce challenge.
- Published
- 2017
26. A WordNet-based semantic approach to textual entailment and cross-lingual textual entailment
- Author
-
Castillo, Julio Javier
- Published
- 2011
- Full Text
- View/download PDF
27. Semantic Similarity from Natural Language and Ontology Analysis
- Author
-
Sébastien Harispe, Sylvie Ranwez, Stefan Janaqi, Jacky Montmain, Laboratoire de Génie Informatique et Ingénierie de Production (LGI2P), IMT - MINES ALES (IMT - MINES ALES), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), and Graeme Hirst
- Subjects
[INFO.INFO-TT]Computer Science [cs]/Document and Text Processing ,Distributional measures ,[INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL] ,Semantic measures ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Abstract
International audience; Artificial Intelligence federates numerous scientific fields in the aim of developing machines able to assist human operators performing complex treatments---most of which demand high cognitive skills (e.g. learning or decision processes). Central to this quest is to give machines the ability to estimate the likeness or similarity between things in the way human beings estimate the similarity between stimuli.In this context, this book focuses on semantic measures: approaches designed for comparing semantic entities such as units of language, e.g. words, sentences, or concepts and instances defined into knowledge bases. The aim of these measures is to assess the similarity or relatedness of such semantic entities by taking into account their semantics, i.e. their meaning---intuitively, the words tea and coffee, which both refer to stimulating beverage, will be estimated to be more semantically similar than the words toffee (confection) and coffee, despite that the last pair has a higher syntactic similarity. The two state-of-the-art approaches for estimating and quantifying semantic similarities/relatedness of semantic entities are presented in detail: the first one relies on corpora analysis and is based on Natural Language Processing techniques and semantic models while the second is based on more or less formal, computer-readable and workable forms of knowledge such as semantic networks, thesauri or ontologies.Semantic measures are widely used today to compare units of language, concepts, instances or even resources indexed by them (e.g., documents, genes). They are central elements of a large variety of Natural Language Processing applications and knowledge-based treatments, and have therefore naturally been subject to intensive and interdisciplinary research efforts during last decades. Beyond a simple inventory and categorization of existing measures, the aim of this monograph is to convey novices as well as researchers of these domains toward a better understanding of semantic similarity estimation and more generally semantic measures. To this end, we propose an in-depth characterization of existing proposals by discussing their features, the assumptions on which they are based and empirical results regarding their performance in particular applications. By answering these questions and by providing a detailed discussion on the foundations of semantic measures, our aim is to give the reader key knowledge required to: (i) select the more relevant methods according to a particular usage context, (ii) understand the challenges offered to this field of study, (iii) distinguish room of improvements for state-of-the-art approaches and (iv) stimulate creativity toward the development of new approaches. In this aim, several definitions, theoretical and practical details, as well as concrete applications are presented.Table of Contents: Preface / Acknowledgments / Introduction to Semantic Measures / Corpus-Based Semantic Measures / Knowledge-Based Semantic Measures / Methods and Datasets for the Evaluation of Semantic Measures / Conclusion and Research Directions / Bibliography / Authors' Biographies
- Published
- 2015
- Full Text
- View/download PDF
28. Knowledge-based Semantic Measures: From Theory to Applications
- Author
-
Harispe, Sébastien, Harispe, Sébastien, Laboratoire de Génie Informatique et Ingénierie de Production (LGI2P), IMT - MINES ALES (IMT - MINES ALES), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Université de Montpellier, Jacky Montmain, Sylvie Ranwez (encadrement), and Stefan Janaqi (encadrement)
- Subjects
semantic similarity ,[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,similarité sémantiques ,Ingénierie des Connaissances ,[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,semantic relatedness ,[INFO.INFO-DS] Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,Knowledge Representation ,[INFO] Computer Science [cs] ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Intelligence Artificielle ,semantic measures ,Artificial Intelligence ,[INFO.INFO-IR]Computer Science [cs]/Information Retrieval [cs.IR] ,proximité sémantiques ,mesures sémantiques ,[INFO]Computer Science [cs] ,ontologies ,[INFO.INFO-IR] Computer Science [cs]/Information Retrieval [cs.IR] - Abstract
The notions of semantic proximity, distance, and similarity have long been considered essential for the elaboration of numerous cognitive processes, and are therefore of major importance for the communities involved in the development of artificial intelligence. This thesis studies the diversity of semantic measures which can be used to compare lexical entities, concepts and instances by analysing corpora of texts and ontologies. Strengthened by the development of Knowledge Representation and Semantic Web technologies, these measures are arousing increasing interest in both academic and industrial fields.This manuscript begins with an extensive state-of-the-art which presents numerous contributions proposed by several communities, and underlines the diversity and interdisciplinary nature of this domain. Thanks to this work, despite the apparent heterogeneity of semantic measures, we were able to distinguish common properties and therefore propose a general classification of existing approaches. Our work goes on to look more specifically at measures which take advantage of ontologies expressed by means of semantic graphs, e.g. RDF(S) graphs. We show that these measures rely on a reduced set of abstract primitives and that, even if they have generally been defined independently in the literature, most of them are only specific expressions of generic parametrised measures. This result leads us to the definition of a unifying theoretical framework for semantic measures, which can be used to: (i) design new measures, (ii) study theoretical properties of measures, (iii) guide end-users in the selection of measures adapted to their usage context. The relevance of this framework is demonstrated in its first practical applications which show, for instance, how it can be used to perform theoretical and empirical analyses of measures with a previously unattained level of detail. Interestingly, this framework provides a new insight into semantic measures and opens interesting perspectives for their analysis.Having uncovered a flagrant lack of generic and efficient software solutions dedicated to (knowledge-based) semantic measures, a lack which clearly hampers both the use and analysis of semantic measures, we consequently developed the Semantic Measures Library (SML): a generic software library dedicated to the computation and analysis of semantic measures. The SML can be used to take advantage of hundreds of measures defined in the literature or those derived from the parametrised functions introduced by the proposed unifying framework. These measures can be analysed and compared using the functionalities provided by the library. The SML is accompanied by extensive documentation, community support and software solutions which enable non-developers to take full advantage of the library. In broader terms, this project proposes to federate the several communities involved in this domain in order to create an interdisciplinary synergy around the notion of semantic measures: http://www.semantic-measures-library.org This thesis also presents several algorithmic and theoretical contributions related to semantic measures: (i) an innovative method for the comparison of instances defined in a semantic graph - we underline in particular its benefits in the definition of content-based recommendation systems, (ii) a new approach to compare concepts defined in overlapping taxonomies, (iii) algorithmic optimisation for the computation of a specific type of semantic measure, and (iv) a semi-supervised learning-technique which can be used to identify semantic measures adapted to a specific usage context, while simultaneously taking into account the uncertainty associated to the benchmark in use. These contributions have been validated by several international and national publications., Les notions de proximité, de distance et de similarité sémantiques sont depuis longtemps jugées essentielles dans l’élaboration de nombreux processus cognitifs et revêtent donc un intérêt majeur pour les communautés intéressées au développement d'intelligences artificielles. Cette thèse s'intéresse aux différentes mesures sémantiques permettant de comparer des unités lexicales, des concepts ou des instances par l'analyse de corpus de textes ou de représentations de connaissance (i.e. ontologies). Encouragées par l'essor des technologies liées à l'Ingénierie des Connaissances et au Web sémantique, ces mesures suscitent de plus en plus d'intérêt à la fois dans le monde académique et industriel.Ce manuscrit débute par un vaste état de l'art qui met en regard des travaux publiés dans différentes communautés et souligne l'aspect interdisciplinaire et la diversité des recherches actuelles dans ce domaine. Cela nous a permis, sous l'apparente hétérogénéité des mesures existantes, de distinguer certaines propriétés communes et de présenter une classification générale des approches proposées. Par la suite, ces travaux se concentrent sur les mesures qui s'appuient sur une structuration de la connaissance sous forme de graphes sémantiques, e.g. graphes RDF(S). Nous montrons que ces mesures reposent sur un ensemble réduit de primitives abstraites, et que la plupart d'entre elles, bien que définies indépendamment dans la littérature, ne sont que des expressions particulières de mesures paramétriques génériques. Ce résultat nous a conduits à définir un cadre théorique unificateur pour les mesures sémantiques. Il permet notamment : (i) d'exprimer de nouvelles mesures, (ii) d'étudier les propriétés théoriques des mesures et (iii) d'orienter l'utilisateur dans le choix d'une mesure adaptée à sa problématique. Les premiers cas concrets d'utilisation de ce cadre démontrent son intérêt en soulignant notamment qu'il permet l'analyse théorique et empirique des mesures avec un degré de détail particulièrement fin, jamais atteint jusque-là. Plus généralement, ce cadre théorique permet de poser un regard neuf sur ce domaine et ouvre de nombreuses perspectives prometteuses pour l'analyse des mesures sémantiques.Le domaine des mesures sémantiques souffre d'un réel manque d'outils logiciels génériques et performants ce qui complique à la fois l'étude et l'utilisation de ces mesures. En réponse à ce manque, nous avons développé la Semantic Measures Library (SML), une librairie logicielle dédiée au calcul et à l'analyse des mesures sémantiques. Elle permet d'utiliser des centaines de mesures issues à la fois de la littérature et des fonctions paramétriques étudiées dans le cadre unificateur introduit. Celles-ci peuvent être analysées et comparées à l'aide des différentes fonctionnalités proposées par la librairie. La SML s'accompagne d'une large documentation, d'outils logiciels permettant son utilisation par des non informaticiens, d'une liste de diffusion, et de façon plus large, se propose de fédérer les différentes communautés du domaine afin de créer une synergie interdisciplinaire autour la notion de mesures sémantiques : http://www.semantic-measures-library.orgCette étude a également conduit à différentes contributions algorithmiques et théoriques, dont (i) la définition d'une méthode innovante pour la comparaison d'instances définies dans un graphe sémantique - nous montrons son intérêt pour la mise en place de système de recommandation à base de contenu, (ii) une nouvelle approche pour comparer des concepts représentés dans des taxonomies chevauchantes, (iii) des optimisations algorithmiques pour le calcul de certaines mesures sémantiques, et (iv) une technique d'apprentissage semi-supervisée permettant de cibler les mesures sémantiques adaptées à un contexte applicatif particulier en prenant en compte l'incertitude associée au jeu de test utilisé. Ces travaux ont été validés par plusieurs publications et communications nationales et internationales.
- Published
- 2014
29. Semantic Measures: A State of the Art
- Author
-
Chabot, Yoan, Nicolle, Christophe, Le2i - CheckSem, School of Computer Science and Informatics [Dublin], University College Dublin [Dublin] ( UCD ) -University College Dublin [Dublin] ( UCD ) -Laboratoire Electronique, Informatique et Image ( Le2i ), Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS ) -Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS ), Checksem, Laboratoire Electronique, Informatique et Image ( Le2i ), University College Dublin [Dublin] (UCD)-University College Dublin [Dublin] (UCD)-Laboratoire Electronique, Informatique et Image [UMR6306] (Le2i), Université de Bourgogne (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM), HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS), Laboratoire Electronique, Informatique et Image [UMR6306] (Le2i), and Chabot, Yoan
- Subjects
[INFO.INFO-TT]Computer Science [cs]/Document and Text Processing ,[ INFO.INFO-TT ] Computer Science [cs]/Document and Text Processing ,[INFO.INFO-TT] Computer Science [cs]/Document and Text Processing ,Semantic relatedness ,Semantic measures - Abstract
Significant advances in terms of syntactic, structural and schematic heterogeneity have been achieved by adopting conventions and standards. The IT community is now trying to solve the problem of semantic heterogeneity (particularly in the Semantic Web field). To reach this objective, it is necessary to enable machines to understand the semantics of terms. Semantics, as opposed to syntax, defines the mental representation of concepts corresponding to the symbols used in texts or images. When a person reads a text, he uses a semantization process which enables him to associate an interpretation to each sign identified. This operation uses a number of underlying processes such as measuring semantic distance between the meanings of several terms. Reasoning about the semantic proximity of terms is trivial for a human. However, this task is very complex for machines, and requires access to a large number of definitions of specific field terms.
- Published
- 2014
30. Combining a co-occurrence-based and a semantic measure for entity linking
- Author
-
Pereira Nunes, Bernardo, Dietze, Stefan, Casanova, Marco Antonio, Kawase, Ricardo, Fetahu, Besnik, Nejdl, Wolfgang, Cimiano, Philipp, Corcho, Oscar, Presutti, Valentina, Hollink, Laura, and Rudolph, Sebastian
- Subjects
Linked datum ,Graph analysis ,link detection ,linked data ,Semantic connectivity ,Semantic relationships ,World Wide Web ,co-occurrence-based measure ,Dewey Decimal Classification::000 | Allgemeines, Wissenschaft::000 | Informatik, Wissen, Systeme::004 | Informatik ,Web resources ,semantic associations ,Search engines ,Co-occurrence ,Data integration ,ddc:004 ,Konferenzschrift ,Semantic measures ,Semantic Web - Abstract
One key feature of the Semantic Web lies in the ability to link related Web resources. However, while relations within particular datasets are often well-defined, links between disparate datasets and corpora of Web resources are rare. The increasingly widespread use of cross-domain reference datasets, such as Freebase and DBpedia for annotating and enriching datasets as well as documents, opens up opportunities to exploit their inherent semantic relationships to align disparate Web resources. In this paper, we present a combined approach to uncover relationships between disparate entities which exploits (a) graph analysis of reference datasets together with (b) entity co-occurrence on the Web with the help of search engines. In (a), we introduce a novel approach adopted and applied from social network theory to measure the connectivity between given entities in reference datasets. The connectivity measures are used to identify connected Web resources. Finally, we present a thorough evaluation of our approach using a publicly available dataset and introduce a comparison with established measures in the field. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-38288-8_37.
- Published
- 2013
31. Combining a co-occurrence-based and a semantic measure for entity linking
- Author
-
Cimiano, Philipp, Corcho, Oscar, Presutti, Valentina, Hollink, Laura, Rudolph, Sebastian, Pereira Nunes, Bernardo, Dietze, Stefan, Casanova, Marco Antonio, Kawase, Ricardo, Fetahu, Besnik, Nejdl, Wolfgang, Cimiano, Philipp, Corcho, Oscar, Presutti, Valentina, Hollink, Laura, Rudolph, Sebastian, Pereira Nunes, Bernardo, Dietze, Stefan, Casanova, Marco Antonio, Kawase, Ricardo, Fetahu, Besnik, and Nejdl, Wolfgang
- Abstract
One key feature of the Semantic Web lies in the ability to link related Web resources. However, while relations within particular datasets are often well-defined, links between disparate datasets and corpora of Web resources are rare. The increasingly widespread use of cross-domain reference datasets, such as Freebase and DBpedia for annotating and enriching datasets as well as documents, opens up opportunities to exploit their inherent semantic relationships to align disparate Web resources. In this paper, we present a combined approach to uncover relationships between disparate entities which exploits (a) graph analysis of reference datasets together with (b) entity co-occurrence on the Web with the help of search engines. In (a), we introduce a novel approach adopted and applied from social network theory to measure the connectivity between given entities in reference datasets. The connectivity measures are used to identify connected Web resources. Finally, we present a thorough evaluation of our approach using a publicly available dataset and introduce a comparison with established measures in the field. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-38288-8_37.
- Published
- 2013
32. From speech to SQL queries : a speech understanding system
- Author
-
Salma Jamoussi, Kamel Smaïli, Jean-Paul Haton, Analysis, perception and recognition of speech (PAROLE), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Natural Language Processing & Knowledge Discovery (LORIA - NLPKD), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Smaïli, Kamel, Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), and Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
semantic measures ,Bayesian networks ,[INFO.INFO-CL] Computer Science [cs]/Computation and Language [cs.CL] ,word vector representation ,Speech understanding ,AutoClass ,[INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL] ,automatic extraction of concepts - Abstract
International audience; In this pap er, we describe our speech understanding system and we test it ontwo different applications. The proposed system is a task specific one and it concernespecially oral database consultation tasks. In this work, we consider that theautomatic speech understanding problem could be seen as an association problembetween two different languages. At the entry , the request expressed in naturallanguage and at the end, just before the interpretation stage, the same request isexpressed in term of concepts. A concept represents a given meaning, it is definedby a set of words sharing the same semantic properties. In this pap er, we propose anew Bayesian network based method to automatically extract the underlined concepts.We also propose and compare three approaches for the vector representationof words. We finish this pap er by a description of the post-processing step duringwhich we generate corresponding SQL queries to the pronounced sentences and weconnect our understanding system to a speech recognition engine. This step allowsus to validate our speech understanding approach by obtaining with the two treatedapplications the rates of 78% and 81% of well formed SQL requests.
- Published
- 2005
33. A complete understanding speech system based on semantic concepts
- Author
-
Salma Jamoussi, Kamel Smaïli, Dominique Fohr, Jean-Paul Haton, Analysis, perception and recognition of speech (PAROLE), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)
- Subjects
speech understanding ,réseaux bayésiens ,classification non supervisée ,[INFO.INFO-OH]Computer Science [cs]/Other [cs.OH] ,autoclass ,automatic extraction of concepts ,semantic measures ,clustering methods ,bayesian networks ,représentation vectorielle des mots ,compréhension de la parole ,mesures sémantiques ,word vector representation ,extraction automatique des concepts - Abstract
Colloque avec actes et comité de lecture. internationale.; International audience; In this work, we present a complete speech understanding system based on our speech recognizer: ESPERE. The input signal is processed and the best sentence is then proposed to the understanding module. In our case, the understanding problem is considered as a matching process between two different languages. At the entry, the request expressed in natural language and at the output the corresponding SQL form. The SQL request is obtained after an intermediate step in which the entry is expressed in terms of concepts. A concept represents a given meaning, it is defined by a set of words sharing the same semantic properties. In this paper, we propose a new Bayesian classifier to automatically extract the underlined concepts. We also propose a new approach for vector representation of words. Then, we describe the postprocessing step during which, we label our sentences and we generate the corresponding SQL queries. We conclude our paper by describing the integration step of our understanding module in a complete platform of human-machine oral intercation.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.