1. Quantification of Cycling Smoothness in Children with Cerebral Palsy
- Author
-
Ahad Behboodi, Ashwini Sansare, and Samuel C. K. Lee
- Subjects
roughness index ,spectral arc length ,cycling rhythm ,cycling biomechanics ,cerebral palsy ,smoothness ,Mechanics of engineering. Applied mechanics ,TA349-359 ,Descriptive and experimental mechanics ,QC120-168.85 - Abstract
Smoothness is a hallmark of skilled, coordinated movement, however, mathematically quantifying movement smoothness is nuanced. Several smoothness metrics exist, each having its own limitations and may be specific to a particular motion such as upper limb reaching. To date, there is no consensus on which smoothness metric is the most appropriate for assessing cycling motion in children with cerebral palsy (CP). We evaluated the ability of four preexisting metrics, dimensionless jerk, spectral arc length measure, roughness index, and cross-correlation; and two new metrics, arc length and root mean square error, to quantify the smoothness of cycling in a preexisting dataset from children with CP (mean age 13.7 ± 2.6 years). First, to measure the repeatability of each measure in distinguishing between different levels of un-smoothness, we applied each metric to a set of simulated crank motion signals with a known number of aberrant revolutions using subjects’ actual crank angle data. Second, we used discriminant function analysis to statistically compare the strength of the six metrics, relative to each other, to discriminate between a smooth cycling motion obtained from a dataset of typically developed children (TD), the control group (mean age 14.9 ± 1.4 years), and a less smooth, halted cycling motion obtained from children with CP. Our results show that (1) ArcL showed the highest repeatability in accurately quantifying an unsmooth motion when the same cycling revolutions were presented in a different order, and (2) ArcL and DJ had the highest discriminatory ability to differentiate between an unsmooth and smooth cycling motion. Combining the results from the repeatability and discriminatory analysis, ArcL was the most repeatable and sensitive metric in identifying unsmooth, halted cycling motion from smooth motion. ArcL can hence be used as a metric in future studies to quantify changes in the smoothness of cycling motion pre- vs. post-interventions. Further, this metric may serve as a tool to track motor recovery not just in individuals with CP but in other patient populations with similar neurological deficits that may present with halted, unsmooth cycling motion.
- Published
- 2023
- Full Text
- View/download PDF