1. Poly(vinyl alcohol)-Based Biofilms Plasticized with Polyols and Colored with Pigments Extracted from Tomato By-Products
- Author
-
Laura Mitrea, Lavinia-Florina Călinoiu, Gheorghe-Adrian Martău, Katalin Szabo, Bernadette-Emoke Teleky, Vlad Mureșan, Alexandru-Vasile Rusu, Claudia-Terezia Socol, and Dan-Cristian Vodnar
- Subjects
poly(vinyl alcohol) ,glycerol ,1,3-propanediol ,2,3-butanediol ,plasticizer ,tomato pigments ,rheology ,Organic chemistry ,QD241-441 - Abstract
In the current work the physicochemical features of poly(vinyl alcohol) (PVOH) biofilms, enriched with eco-friendly polyols and with carotenoid-rich extracts, were investigated. The polyols, such as glycerol (Gly), 1,3-propanediol (PDO), and 2,3-butanediol (BDO) were used as plasticizers and the tomato-based pigments (TP) as coloring agents. The outcomes showed that β-carotene was the major carotenoid in the TP (1.605 mg β-carotene/100 DW), which imprinted the orange color to the biofilms. The flow behavior indicated that with the increase of shear rate the viscosity of biofilm solutions also increased until 50 s−1, reaching values at 37 °C of approximately 9 ± 0.5 mPa·s for PVOH, and for PVOH+TP, 14 ± 0.5 mPa·s in combination with Gly, PDO, and BDO. The weight, thickness, and density of samples increased with the addition of polyols and TP. Biofilms with TP had lower transparency values compared with control biofilms (without vegetal pigments). The presence of BDO, especially, but also of PDO and glycerol in biofilms created strong bonds within the PVOH matrix by increasing their mechanical resistance. The novelty of the present approach relies on the replacement of synthetic colorants with natural pigments derived from agro-industrial by-products, and the use of a combination of biodegradable polymers and polyols, as an integrated solution for packaging application in the bioplastic industry.
- Published
- 2020
- Full Text
- View/download PDF