16 results on '"van Ex, F."'
Search Results
2. Shifting the limits in wheat research and breeding using a fully annotated reference genome
- Author
-
Appels, R., Eversole, K., Feuillet, C., Keller, B., Rogers, J., Stein, N., Pozniak, C.J., Choulet, F., Distelfeld, A., Poland, J., Ronen, G., Barad, O., Baruch, K., Keeble-Gagnère, G., Mascher, M., Sharpe, A.G., Ben-Zvi, G., Josselin, A-A, Himmelbach, A., Balfourier, F., Gutierrez-Gonzalez, J., Hayden, M., Koh, C., Muehlbauer, G., Pasam, R.K., Paux, E., Rigault, P., Tibbits, J., Tiwari, V., Spannagl, M., Lang, D., Gundlach, H., Haberer, G., Mayer, K.F.X., Ormanbekova, D., Prade, V., Šimková, H., Wicker, T., Swarbreck, D., Rimbert, H., Felder, M., Guilhot, N., Kaithakottil, G., Keilwagen, J., Leroy, P., Lux, T., Twardziok, S., Venturini, L., Juhász, A., Abrouk, M., Fischer, I., Uauy, C., Borrill, P., Ramirez-Gonzalez, R.H., Arnaud, D., Chalabi, S., Chalhoub, B., Cory, A., Datla, R., Davey, M.W., Jacobs, J., Robinson, S.J., Steuernagel, B., van Ex, F., Wulff, B.B.H., Benhamed, M., Bendahmane, A., Concia, L., Latrasse, D., Alaux, M., Bartoš, J., Bellec, A., Berges, H., Doležel, J., Frenkel, Z., Gill, B., Korol, A., Letellier, T., Olsen, O-A, Singh, K., Valárik, M., van der Vossen, E., Vautrin, S., Weining, S., Fahima, T., Glikson, V., Raats, D., Číhalíková, J., Toegelová, H., Vrána, J., Sourdille, P., Darrier, B., Barabaschi, D., Cattivelli, L., Hernandez, P., Galvez, S., Budak, H., Jones, J.D.G., Witek, K., Yu, G., Small, I., Melonek, J., Zhou, R., Belova, T., Kanyuka, K., King, R., Nilsen, K., Walkowiak, S., Cuthbert, R., Knox, R., Wiebe, K., Xiang, D., Rohde, A., Gold, T., Čížková, J., Akpinar, B.A., Biyiklioglu, S., Gao, L., N’Daiye, A., Kubaláková, M., Šafář, J., Alfama, F., Adam-Blondon, A-F, Flores, R., Guerche, C., Loaec, M., Quesneville, H., Condie, J., Ens, J., Koh, C.S., Maclachlan, R., Tan, Y., Alberti, A., Aury, J-M, Barbe, V., Couloux, A., Cruaud, C., Labadie, K., Mangenot, S., Wincker, P., Kaur, G., Luo, M., Sehgal, S., Chhuneja, P., Gupta, O.P., Jindal, S., Kaur, P., Malik, P., Sharma, P., Yadav, B., Singh, N.K., Khurana, J.P., Chaudhary, C., Khurana, P., Kumar, V., Mahato, A., Mathur, S., Sevanthi, A., Sharma, N., Tomar, R.S., Holušová, K., Plíhal, O., Clark, M.D., Heavens, D., Kettleborough, G., Wright, J., Balcárková, B., Hu, Y., Salina, E., Ravin, N., Skryabin, K., Beletsky, A., Kadnikov, V., Mardanov, A., Nesterov, M., Rakitin, A., Sergeeva, E., Handa, H., Kanamori, H., Katagiri, S., Kobayashi, F., Nasuda, S., Tanaka, T., Wu, J., Cattonaro, F., Jiumeng, M., Kugler, K.G., Pfeifer, M., Sandve, S., Xun, X., Zhan, B., Batley, J., Bayer, P.E., Edwards, D., Hayashi, S., Tulpová, Z., Visendi, P., Cui, L., Du, X., Feng, K., Nie, X., Tong, W., Wang, L., Appels, R., Eversole, K., Feuillet, C., Keller, B., Rogers, J., Stein, N., Pozniak, C.J., Choulet, F., Distelfeld, A., Poland, J., Ronen, G., Barad, O., Baruch, K., Keeble-Gagnère, G., Mascher, M., Sharpe, A.G., Ben-Zvi, G., Josselin, A-A, Himmelbach, A., Balfourier, F., Gutierrez-Gonzalez, J., Hayden, M., Koh, C., Muehlbauer, G., Pasam, R.K., Paux, E., Rigault, P., Tibbits, J., Tiwari, V., Spannagl, M., Lang, D., Gundlach, H., Haberer, G., Mayer, K.F.X., Ormanbekova, D., Prade, V., Šimková, H., Wicker, T., Swarbreck, D., Rimbert, H., Felder, M., Guilhot, N., Kaithakottil, G., Keilwagen, J., Leroy, P., Lux, T., Twardziok, S., Venturini, L., Juhász, A., Abrouk, M., Fischer, I., Uauy, C., Borrill, P., Ramirez-Gonzalez, R.H., Arnaud, D., Chalabi, S., Chalhoub, B., Cory, A., Datla, R., Davey, M.W., Jacobs, J., Robinson, S.J., Steuernagel, B., van Ex, F., Wulff, B.B.H., Benhamed, M., Bendahmane, A., Concia, L., Latrasse, D., Alaux, M., Bartoš, J., Bellec, A., Berges, H., Doležel, J., Frenkel, Z., Gill, B., Korol, A., Letellier, T., Olsen, O-A, Singh, K., Valárik, M., van der Vossen, E., Vautrin, S., Weining, S., Fahima, T., Glikson, V., Raats, D., Číhalíková, J., Toegelová, H., Vrána, J., Sourdille, P., Darrier, B., Barabaschi, D., Cattivelli, L., Hernandez, P., Galvez, S., Budak, H., Jones, J.D.G., Witek, K., Yu, G., Small, I., Melonek, J., Zhou, R., Belova, T., Kanyuka, K., King, R., Nilsen, K., Walkowiak, S., Cuthbert, R., Knox, R., Wiebe, K., Xiang, D., Rohde, A., Gold, T., Čížková, J., Akpinar, B.A., Biyiklioglu, S., Gao, L., N’Daiye, A., Kubaláková, M., Šafář, J., Alfama, F., Adam-Blondon, A-F, Flores, R., Guerche, C., Loaec, M., Quesneville, H., Condie, J., Ens, J., Koh, C.S., Maclachlan, R., Tan, Y., Alberti, A., Aury, J-M, Barbe, V., Couloux, A., Cruaud, C., Labadie, K., Mangenot, S., Wincker, P., Kaur, G., Luo, M., Sehgal, S., Chhuneja, P., Gupta, O.P., Jindal, S., Kaur, P., Malik, P., Sharma, P., Yadav, B., Singh, N.K., Khurana, J.P., Chaudhary, C., Khurana, P., Kumar, V., Mahato, A., Mathur, S., Sevanthi, A., Sharma, N., Tomar, R.S., Holušová, K., Plíhal, O., Clark, M.D., Heavens, D., Kettleborough, G., Wright, J., Balcárková, B., Hu, Y., Salina, E., Ravin, N., Skryabin, K., Beletsky, A., Kadnikov, V., Mardanov, A., Nesterov, M., Rakitin, A., Sergeeva, E., Handa, H., Kanamori, H., Katagiri, S., Kobayashi, F., Nasuda, S., Tanaka, T., Wu, J., Cattonaro, F., Jiumeng, M., Kugler, K.G., Pfeifer, M., Sandve, S., Xun, X., Zhan, B., Batley, J., Bayer, P.E., Edwards, D., Hayashi, S., Tulpová, Z., Visendi, P., Cui, L., Du, X., Feng, K., Nie, X., Tong, W., and Wang, L.
- Abstract
Wheat is one of the major sources of food for much of the world. However, because bread wheat's genome is a large hybrid mix of three separate subgenomes, it has been difficult to produce a high-quality reference sequence. Using recent advances in sequencing, the International Wheat Genome Sequencing Consortium presents an annotated reference genome with a detailed analysis of gene content among subgenomes and the structural organization for all the chromosomes. Examples of quantitative trait mapping and CRISPR-based genome modification show the potential for using this genome in agricultural research and breeding. Ramírez-González et al. exploited the fruits of this endeavor to identify tissue-specific biased gene expression and coexpression networks during development and exposure to stress. These resources will accelerate our understanding of the genetic basis of bread wheat.
- Published
- 2018
3. The transcriptional landscape of polyploid wheat
- Author
-
Ramirez-Gonzalez, R.H., Borrill, P., Lang, D., Harrington, S.A., Brinton, J., Venturini, L., Davey, M., Jacobs, J., van Ex, F., Pasha, A., Khedikar, Y., Robinson, S.J., Cory, A.T., Florio, T., Concia, L., Juery, C., Schoonbeek, H., Steuernagel, B., Xiang, D., Ridout, C.J., Chalhoub, B., Mayer, K.F.X., Benhamed, M., Latrasse, D., Bendahmane, A., Wulff, B.B.H., Appels, R., Tiwari, V., Datla, R., Choulet, F., Pozniak, C.J., Provart, N.J., Sharpe, A.G., Paux, E., Spannagl, M., Bräutigam, A., Uauy, C., Ramirez-Gonzalez, R.H., Borrill, P., Lang, D., Harrington, S.A., Brinton, J., Venturini, L., Davey, M., Jacobs, J., van Ex, F., Pasha, A., Khedikar, Y., Robinson, S.J., Cory, A.T., Florio, T., Concia, L., Juery, C., Schoonbeek, H., Steuernagel, B., Xiang, D., Ridout, C.J., Chalhoub, B., Mayer, K.F.X., Benhamed, M., Latrasse, D., Bendahmane, A., Wulff, B.B.H., Appels, R., Tiwari, V., Datla, R., Choulet, F., Pozniak, C.J., Provart, N.J., Sharpe, A.G., Paux, E., Spannagl, M., Bräutigam, A., and Uauy, C.
- Abstract
Wheat is one of the major sources of food for much of the world. However, because bread wheat's genome is a large hybrid mix of three separate subgenomes, it has been difficult to produce a high-quality reference sequence. Using recent advances in sequencing, the International Wheat Genome Sequencing Consortium presents an annotated reference genome with a detailed analysis of gene content among subgenomes and the structural organization for all the chromosomes. Examples of quantitative trait mapping and CRISPR-based genome modification show the potential for using this genome in agricultural research and breeding. Ramírez-González et al. exploited the fruits of this endeavor to identify tissue-specific biased gene expression and coexpression networks during development and exposure to stress. These resources will accelerate our understanding of the genetic basis of bread wheat.
- Published
- 2018
4. O&O-subsidies als deel van het technologiebeleid van de overheid: een stand van zaken
- Author
-
Meeusen, Wim, Suetens, Sigrid, and van Ex, F.
- Published
- 2000
5. Een verkennende studie over technologische innovatie en diffusie
- Author
-
van Ex, F. and Suetens, Sigrid
- Published
- 1999
6. The transcriptional landscape of polyploid wheat.
- Author
-
Ramírez-González, R. H., Borrill, P., Lang, D., Harrington, S. A., Brinton, J., Venturini, L., Davey, M., Jacobs, J., van Ex, F., Pasha, A., Khedikar, Y., Robinson, S. J., Cory, A. T., Florio, T., Concia, L., Juery, C., Schoonbeek, H., Steuernagel, B., Xiang, D., and Ridout, C. J.
- Published
- 2018
7. Division Zone Activity Determines the Potential of Drought-Stressed Maize Leaves to Resume Growth after Rehydration.
- Author
-
Van Hautegem T, Takasaki H, Lorenzo CD, Demuynck K, Claeys H, Villers T, Sprenger H, Debray K, Schaumont D, Verbraeken L, Pevernagie J, Merchie J, Cannoot B, Aesaert S, Coussens G, Yamaguchi-Shinozaki K, Nuccio ML, Van Ex F, Pauwels L, Jacobs TB, Ruttink T, Inzé D, and Nelissen H
- Subjects
- Gene Expression Regulation, Plant, Cell Division, Plant Proteins genetics, Plant Proteins metabolism, Transcriptome, Gene Expression Profiling, Water metabolism, Dehydration, Zea mays growth & development, Zea mays physiology, Zea mays genetics, Plant Leaves physiology, Plant Leaves growth & development, Droughts
- Abstract
Drought is one of the most devastating causes of yield losses in crops like maize, and the anticipated increases in severity and duration of drought spells due to climate change pose an imminent threat to agricultural productivity. To understand the drought response, phenotypic and molecular studies are typically performed at a given time point after drought onset, representing a steady-state adaptation response. Because growth is a dynamic process, we monitored the drought response with high temporal resolution and examined cellular and transcriptomic changes after rehydration at 4 and 6 days after leaf four appearance. These data showed that division zone activity is a determinant for full organ growth recovery upon rehydration. Moreover, a prolonged maintenance of cell division by the ectopic expression of PLASTOCHRON1 extends the ability to resume growth after rehydration. The transcriptome analysis indicated that GROWTH-REGULATING FACTORS (GRFs) affect leaf growth by impacting cell division duration, which was confirmed by a prolonged recovery potential of the GRF1-overexpression line after rehydration. Finally, we used a multiplex genome editing approach to evaluate the most promising differentially expressed genes from the transcriptome study and as such narrowed down the gene space from 40 to seven genes for future functional characterization., (© 2024 John Wiley & Sons Ltd.)
- Published
- 2025
- Full Text
- View/download PDF
8. Pseudouridine guides germline small RNA transport and epigenetic inheritance.
- Author
-
Herridge RP, Dolata J, Migliori V, de Santis Alves C, Borges F, Schorn AJ, van Ex F, Lin A, Bajczyk M, Parent JS, Leonardi T, Hendrick A, Kouzarides T, and Martienssen RA
- Subjects
- Animals, Mice, RNA, Small Interfering metabolism, RNA, Small Interfering genetics, Arabidopsis Proteins metabolism, Arabidopsis Proteins genetics, MicroRNAs genetics, MicroRNAs metabolism, Male, RNA Transport, RNA, Plant metabolism, RNA, Plant genetics, Arabidopsis genetics, Arabidopsis metabolism, Epigenesis, Genetic, Pollen genetics, Pollen metabolism, Pseudouridine metabolism
- Abstract
Developmental epigenetic modifications in plants and animals are mostly reset during gamete formation but some are inherited from the germline. Small RNAs guide these epigenetic modifications but how inherited small RNAs are distinguished in plants and animals is unknown. Pseudouridine (Ψ) is the most abundant RNA modification but has not been explored in small RNAs. Here, we develop assays to detect Ψ in short RNA sequences, demonstrating its presence in mouse and Arabidopsis microRNAs. Germline small RNAs, namely epigenetically activated small interfering RNAs (easiRNAs) in Arabidopsis pollen and Piwi-interacting RNAs in mouse testes, are enriched for Ψ. In pollen, pseudouridylated easiRNAs are transported to sperm cells from the vegetative nucleus, and PAUSED/HEN5 (PSD), the plant homolog of Exportin-t, interacts genetically with Ψ and is required for this transport. We further show that Exportin-t is required for the triploid block: small RNA dosage-dependent seed lethality that is epigenetically inherited from pollen. Thus, Ψ has a conserved role in marking inherited small RNAs in the germline., Competing Interests: Competing interests: T.K. is a cofounder of Abcam Plc and Storm Therapeutics, Ltd. (Cambridge, UK). A.H. is an employee of Storm Therapeutics, Ltd. (Cambridge, UK). The other authors declare no competing interests., (© 2024. The Author(s).)
- Published
- 2025
- Full Text
- View/download PDF
9. Coordinated gene upregulation in maize through CRISPR/Cas-mediated enhancer insertion.
- Author
-
Claeys H, Neyrinck E, Dumoulin L, Pharazyn A, Verstichele A, Pauwels L, Nuccio ML, and Van Ex F
- Subjects
- Up-Regulation, Gene Editing, Genetic Engineering, CRISPR-Cas Systems genetics, Zea mays genetics
- Published
- 2024
- Full Text
- View/download PDF
10. Pseudouridine guides germline small RNA transport and epigenetic inheritance.
- Author
-
Herridge RP, Dolata J, Migliori V, de Santis Alves C, Borges F, Schorn AJ, Van Ex F, Parent JS, Lin A, Bajczyk M, Leonardi T, Hendrick A, Kouzarides T, and Martienssen RA
- Abstract
Epigenetic modifications that arise during plant and animal development, such as DNA and histone modification, are mostly reset during gamete formation, but some are inherited from the germline including those marking imprinted genes
1 . Small RNAs guide these epigenetic modifications, and some are also inherited by the next generation2,3 . In C. elegans , these inherited small RNAs have poly (UG) tails4 , but how inherited small RNAs are distinguished in other animals and plants is unknown. Pseudouridine (Ψ) is the most abundant RNA modification but has not been explored in small RNAs. Here, we develop novel assays to detect Ψ in short RNA sequences, demonstrating its presence in mouse and Arabidopsis microRNAs and their precursors. We also detect substantial enrichment in germline small RNAs, namely epigenetically activated siRNAs (easiRNAs) in Arabidopsis pollen, and piwi-interacting piRNAs in mouse testis. In pollen, pseudouridylated easiRNAs are localized to sperm cells, and we found that PAUSED/HEN5 ( PSD ), the plant homolog of Exportin-t, interacts genetically with Ψ and is required for transport of easiRNAs into sperm cells from the vegetative nucleus. We further show that Exportin-t is required for the triploid block: chromosome dosage-dependent seed lethality that is epigenetically inherited from pollen. Thus, Ψ has a conserved role in marking inherited small RNAs in the germline., Competing Interests: Competing interests: T.K. is a co-founder of Abcam Plc and Storm Therapeutics Ltd, Cambridge, UK. A.H. is an employee of Storm Therapeutics Ltd, Cambridge, UK.- Published
- 2023
- Full Text
- View/download PDF
11. Transposon-derived small RNAs triggered by miR845 mediate genome dosage response in Arabidopsis.
- Author
-
Borges F, Parent JS, van Ex F, Wolff P, Martínez G, Köhler C, and Martienssen RA
- Subjects
- Gene Expression Regulation, Plant, Genome, Plant, MicroRNAs genetics, Polyploidy, Terminal Repeat Sequences genetics, Arabidopsis genetics, Dosage Compensation, Genetic genetics, MicroRNAs physiology, RNA, Plant genetics, Retroelements physiology
- Abstract
Chromosome dosage has substantial effects on reproductive isolation and speciation in both plants and animals, but the underlying mechanisms are largely obscure
1 . Transposable elements in animals can regulate hybridity through maternal small RNA2 , whereas small RNAs in plants have been postulated to regulate dosage response via neighboring imprinted genes3,4 . Here we show that a highly conserved microRNA in plants, miR845, targets the tRNAMet primer-binding site (PBS) of long terminal repeat (LTR) retrotransposons in Arabidopsis pollen, and triggers the accumulation of 21-22-nucleotide (nt) small RNAs in a dose-dependent fashion via RNA polymerase IV. We show that these epigenetically activated small interfering RNAs (easiRNAs) mediate hybridization barriers between diploid seed parents and tetraploid pollen parents (the 'triploid block'), and that natural variation for miR845 may account for 'endosperm balance' allowing the formation of triploid seeds. Targeting of the PBS with small RNA is a common mechanism for transposon control in mammals and plants, and provides a uniquely sensitive means to monitor chromosome dosage and imprinting in the developing seed.- Published
- 2018
- Full Text
- View/download PDF
12. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis.
- Author
-
Creasey KM, Zhai J, Borges F, Van Ex F, Regulski M, Meyers BC, and Martienssen RA
- Subjects
- Base Sequence, Conserved Sequence, DNA Transposable Elements genetics, Genome, Plant genetics, MicroRNAs metabolism, Models, Genetic, Open Reading Frames genetics, RNA, Small Interfering biosynthesis, Arabidopsis genetics, Epigenesis, Genetic, MicroRNAs genetics, RNA, Small Interfering genetics, Retroelements genetics
- Abstract
In plants, post-transcriptional gene silencing (PTGS) is mediated by DICER-LIKE 1 (DCL1)-dependent microRNAs (miRNAs), which also trigger 21-nucleotide secondary short interfering RNAs (siRNAs) via RNA-DEPENDENT RNA POLYMERASE 6 (RDR6), DCL4 and ARGONAUTE 1 (AGO1), whereas transcriptional gene silencing (TGS) of transposons is mediated by 24-nucleotide heterochromatic (het)siRNAs, RDR2, DCL3 and AGO4 (ref. 4). Transposons can also give rise to abundant 21-nucleotide 'epigenetically activated' small interfering RNAs (easiRNAs) in DECREASED DNA METHYLATION 1 (ddm1) and DNA METHYLTRANSFERASE 1 (met1) mutants, as well as in the vegetative nucleus of pollen grains and in dedifferentiated plant cell cultures. Here we show that easiRNAs in Arabidopsis thaliana resemble secondary siRNAs, in that thousands of transposon transcripts are specifically targeted by more than 50 miRNAs for cleavage and processing by RDR6. Loss of RDR6, DCL4 or DCL1 in a ddm1 background results in loss of 21-nucleotide easiRNAs and severe infertility, but 24-nucleotide hetsiRNAs are partially restored, supporting an antagonistic relationship between PTGS and TGS. Thus miRNA-directed easiRNA biogenesis is a latent mechanism that specifically targets transposon transcripts, but only when they are epigenetically reactivated during reprogramming of the germ line. This ancient recognition mechanism may have been retained both by transposons to evade long-term heterochromatic silencing and by their hosts for genome defence.
- Published
- 2014
- Full Text
- View/download PDF
13. T-DNA transfer and T-DNA integration efficiencies upon Arabidopsis thaliana root explant cocultivation and floral dip transformation.
- Author
-
Ghedira R, De Buck S, Van Ex F, Angenon G, and Depicker A
- Subjects
- Agrobacterium tumefaciens genetics, Coculture Techniques, Flowers genetics, Gene Transfer Techniques, Genetic Vectors, Plant Roots genetics, Plants, Genetically Modified, Transformation, Genetic, Arabidopsis genetics, DNA, Bacterial genetics
- Abstract
T-DNA transfer and integration frequencies during Agrobacterium-mediated root explant cocultivation and floral dip transformations of Arabidopsis thaliana were analyzed with and without selection for transformation-competent cells. Based on the presence or absence of CRE recombinase activity without or with the CRE T-DNA being integrated, transient expression versus stable transformation was differentiated. During root explant cocultivation, continuous light enhanced the number of plant cells competent for interaction with Agrobacterium and thus the number of transient gene expression events. However, in transformation competent plant cells, continuous light did not further enhance cotransfer or cointegration frequencies. Upon selection for root transformants expressing a first T-DNA, 43-69 % of these transformants showed cotransfer of another non-selected T-DNA in two different light regimes. However, integration of the non-selected cotransferred T-DNA occurred only in 19-46 % of these transformants, indicating that T-DNA integration in regenerating root cells limits the transformation frequencies. After floral dip transformation, transient T-DNA expression without integration could not be detected, while stable T-DNA transformation occurred in 0.5-1.3 % of the T1 seedlings. Upon selection for floral dip transformants with a first T-DNA, 8-34 % of the transformants showed cotransfer of the other non-selected T-DNA and in 93-100 % of them, the T-DNA was also integrated. Therefore, a productive interaction between the agrobacteria and the female gametophyte, rather than the T-DNA integration process, restricts the floral dip transformation frequencies.
- Published
- 2013
- Full Text
- View/download PDF
14. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA.
- Author
-
Calarco JP, Borges F, Donoghue MT, Van Ex F, Jullien PE, Lopes T, Gardner R, Berger F, Feijó JA, Becker JD, and Martienssen RA
- Subjects
- Animals, Arabidopsis growth & development, DNA Transposable Elements, Mammals genetics, RNA, Plant metabolism, RNA, Small Interfering metabolism, Seeds genetics, Seeds metabolism, Arabidopsis genetics, DNA Methylation, Epigenesis, Genetic, Pollen genetics, RNA, Plant genetics, RNA, Small Interfering genetics
- Abstract
Epigenetic inheritance is more widespread in plants than in mammals, in part because mammals erase epigenetic information by germline reprogramming. We sequenced the methylome of three haploid cell types from developing pollen: the sperm cell, the vegetative cell, and their precursor, the postmeiotic microspore, and found that unlike in mammals the plant germline retains CG and CHG DNA methylation. However, CHH methylation is lost from retrotransposons in microspores and sperm cells and restored by de novo DNA methyltransferase guided by 24 nt small interfering RNA, both in the vegetative nucleus and in the embryo after fertilization. In the vegetative nucleus, CG methylation is lost from targets of DEMETER (DME), REPRESSOR OF SILENCING 1 (ROS1), and their homologs, which include imprinted loci and recurrent epialleles that accumulate corresponding small RNA and are premethylated in sperm. Thus genome reprogramming in pollen contributes to epigenetic inheritance, transposon silencing, and imprinting, guided by small RNA., (Copyright © 2012 Elsevier Inc. All rights reserved.)
- Published
- 2012
- Full Text
- View/download PDF
15. Multiple roles for small RNAs during plant reproduction.
- Author
-
Van Ex F, Jacob Y, and Martienssen RA
- Subjects
- Gene Expression Regulation, Plant, Meiosis genetics, RNA Interference, Reproduction genetics, Seeds, Plant Physiological Phenomena genetics, RNA, Plant genetics, RNA, Small Interfering genetics
- Abstract
Germline development and early embryogenesis in eukaryotes are characterized by large-scale genome reprogramming events. In companion cells of the Arabidopsis male gametophyte, epigenome reorganization leads to loss of heterochromatin and production of a distinct small RNA (sRNA) population. A specific class of sRNA derived from transposons appears to be mobile and can accumulate in germ cells. In the germline of maize, rice, and Arabidopsis, specific ARGONAUTE-sRNA silencing complexes appear to play key roles in reproductive development, including meiosis and regulation of germ cell fate. These results reveal new roles for sRNAs during plant reproduction and suggest that mobility of sRNAs could be critical for some of these functions., (Copyright © 2011 Elsevier Ltd. All rights reserved.)
- Published
- 2011
- Full Text
- View/download PDF
16. Evaluation of seven promoters to achieve germline directed Cre-lox recombination in Arabidopsis thaliana.
- Author
-
Van Ex F, Verweire D, Claeys M, Depicker A, and Angenon G
- Subjects
- Arabidopsis metabolism, Gene Expression Regulation, Plant, Genetic Engineering methods, Integrases genetics, Arabidopsis genetics, Integrases metabolism, Promoter Regions, Genetic, Recombination, Genetic
- Abstract
Site-specific recombination systems, such as Cre-lox from bacteriophage P1, have become very important tools for plant genome engineering. In many cases a constitutive promoter is used to express the recombinase gene. However, for certain research and commercial applications constitutive Cre-mediated recombination may not be desirable. We have evaluated the potential of seven different germline promoter:cre fusions to remove a stably integrated lox cassette through Cre-mediated recombination in Arabidopsis thaliana. We monitored the functionality of each promoter in the germline of primary transformants by analyzing the presence of the recombined lox cassette in T(2) progeny. The selected germline promoters are involved in different developmental cues, including early stem cell identity (CLAVATA3), flower meristem identity (LEAFY, APETALA1), floral organ identity (AGAMOUS), and meiosis (SOLO DANCERS, DMC1, SWITCH1). For five out of these seven promoters we were able to show that efficient Cre-mediated recombination does, indeed, occur and that the recombination takes place at some point during germline development. Furthermore, a recombination efficiency of 100% is obtained when Cre-expression is regulated by the CLAVATA3 promoter. In addition, with these promoters, we observe much less variation in recombination frequency than previously reported for the 35S promoter. For these reasons, we believe that germline-specific Cre-lox recombination provides an additional tool to the site-specific recombination technology in plants.
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.