70 results on '"van Heesch S"'
Search Results
2. Correction to: LINC01013 Is a Determinant of Fibroblast Activation and Encodes a Novel Fibroblast-Activating Micropeptide
- Author
-
Quaife, N. M., Chothani, S., Schulz, J. F., Lindberg, E. L., Vanezis, K., Adami, E., O’Fee, K., Greiner, J., Litviňuková, M., van Heesch, S., Whiffin, N., Hubner, N., Schafer, S., Rackham, O., Cook, S. A., and Barton, P. J. R.
- Published
- 2023
- Full Text
- View/download PDF
3. Correction to: LINC01013 Is a Determinant of Fibroblast Activation and Encodes a Novel Fibroblast-Activating Micropeptide
- Author
-
Quaife, N. M., primary, Chothani, S., additional, Schulz, J. F., additional, Lindberg, E. L., additional, Vanezis, K., additional, Adami, E., additional, O’Fee, K., additional, Greiner, J., additional, Litviňuková, M., additional, van Heesch, S., additional, Whiffin, N., additional, Hubner, N., additional, Schafer, S., additional, Rackham, O., additional, Cook, S. A., additional, and Barton, P. J. R., additional
- Published
- 2022
- Full Text
- View/download PDF
4. LINC01013 Is a Determinant of Fibroblast Activation and Encodes a Novel Fibroblast-Activating Micropeptide
- Author
-
Quaife, N. M., primary, Chothani, S., additional, Schulz, J. F., additional, Lindberg, E. L., additional, Vanezis, K., additional, Adami, E., additional, O’Fee, K., additional, Greiner, J., additional, Litviňuková, M., additional, van Heesch, S., additional, Whiffin, N., additional, Hubner, N., additional, Schafer, S., additional, Rackham, O., additional, Cook, S. A., additional, and Barton, P. J. R., additional
- Published
- 2022
- Full Text
- View/download PDF
5. A community-driven roadmap to advance research on translated open reading frames detected by Ribo-seq
- Author
-
Mudge, J.M., Ruiz-Orera, J., Prensner, J.R., Brunet, M.A., Gonzalez, J.M., Magrane, M., Martinez, T., Schulz, J.F., Yang, Y.T., Albà, M.M., Baranov, P.V., Bazzini, A., Bruford, E., Martin, M.J., Carvunis, A.R., Chen, J., Couso, J.P., Flicek, P., Frankish, A., Gerstein, M., Hubner, N., Ingolia, N.T., Menschaert, G., Ohler, U., Roucou, X., Saghatelian, A., Weissman, J., and van Heesch, S.
- Subjects
Cancer Research ,animal structures ,Cardiovascular and Metabolic Diseases ,natural sciences - Abstract
Ribosome profiling (Ribo-seq) has catalyzed a paradigm shift in our understanding of the translational ‘vocabulary’ of the human genome, discovering thousands of translated open reading frames (ORFs) within long non-coding RNAs and presumed untranslated regions of protein-coding genes. However, reference gene annotation projects have been circumspect in their incorporation of these ORFs due to uncertainties about their experimental reproducibility and physiological roles. Yet, it is indisputable that certain Ribo-seq ORFs make stable proteins, others mediate gene regulation, and many have medical implications. Ultimately, the absence of standardized ORF annotation has created a circular problem: while Ribo-seq ORFs remain unannotated by reference biological databases, this lack of characterisation will thwart research efforts examining their roles. Here, we outline the initial stages of a community-led effort supported by GENCODE / Ensembl, HGNC and UniProt to produce a consolidated catalog of human Ribo-seq ORFs.
- Published
- 2021
6. Dual-function RNA-binding proteins influence mRNA abundance and translational efficiency of distinct sets of target genes
- Author
-
Schneider-Lunitz, V., Ruiz-Orera, J., Hubner, N., and van Heesch, S.
- Subjects
Cardiovascular and Metabolic Diseases - Abstract
RNA-binding proteins (RBPs) are key regulators of RNA metabolism. Many RBPs possess uncharacterized RNA-binding domains and localize to multiple subcellular compartments, suggesting their involvement in multiple biological processes. We searched for such multifunctionality within a set of 143 RBPs by integrating experimentally validated target genes with the transcriptomes and translatomes of 80 human hearts. This revealed that RBP abundance is predictive of the extent of target regulation in vivo, leading us to newly associate 27 RBPs with translational control. Amongst those were several splicing factors, of which the muscle specific RBM20 modulated target translation rates through switches in isoform production. For 21 RBPs, we newly observed dual regulatory effects impacting both mRNA levels and translation rates, albeit for virtually independent sets of target genes. We highlight a subset, including G3BP1, PUM1, UCHL5, and DDX3X, where dual regulation is achieved by differential affinity for targets of distinct length and functionality. Strikingly, in a manner very similar to DDX3X, the known splicing factors EFTUD2 and PRPF8 selectively influence target translation rates depending on 5’ UTR structure. Our results indicate unanticipated complexity of protein-RNA interactions at consecutive stages of gene expression and implicate multiple core splicing factors as key regulators of translational output.
- Published
- 2021
7. Multifunctional RNA-binding proteins influence mRNA abundance and translational efficiency of distinct sets of target genes
- Author
-
Norbert Hubner, Jorge Ruiz-Orera, van Heesch S, and Schneider-Lunitz
- Subjects
Untranslated region ,Messenger RNA ,Translational efficiency ,Gene expression ,RNA splicing ,Translation (biology) ,RNA-binding protein ,Computational biology ,Biology ,Gene - Abstract
RNA-binding proteins (RBPs) are key regulators of RNA metabolism. Many RBPs possess uncharacterized RNA-binding domains and localize to multiple subcellular compartments, suggesting their involvement in multiple biological processes. We searched for such multifunctionality within a set of 143 RBPs by integrating experimentally validated target genes with the transcriptomes and translatomes of 80 human hearts. This revealed that RBP abundance is predictive of the extent of target regulation in vivo, leading us to newly associate 27 RBPs with translational control. Amongst those were several splicing factors, of which the muscle specific RBM20 modulated target translation rates through switches in isoform production. For 21 RBPs, we newly observed dual regulatory effects impacting both mRNA levels and translation rates, albeit for virtually independent sets of target genes. We highlight a subset, including G3BP1, PUM1, UCHL5, and DDX3X, where dual regulation is achieved by differential affinity for targets of distinct length and functionality. Strikingly, in a manner very similar to DDX3X, the known splicing factors EFTUD2 and PRPF8 selectively influence target translation rates depending on 5’ UTR structure. Our results indicate unanticipated complexity of protein-RNA interactions at consecutive stages of gene expression and implicate multiple core splicing factors as key regulators of translational output.
- Published
- 2021
8. The Tug1 locus is essential for male fertility
- Author
-
Lewandowski, J.P., Dumbović, G., Watson, A.R., Hwang, T., Jacobs-Palmer, E., Chang, N., Much, C., Turner, K., Kirby, C., Schulz, J.F., Müller, C.L., Rubinstein, N.D., Groff, A.F., Liapis, S.C., Gerhardinger, C., Hubner, N., van Heesch, S., Hoekstra, H.E., Sauvageau, M., and Rinn, J.L.
- Subjects
Cardiovascular and Metabolic Diseases - Abstract
Background: Several long noncoding RNAs (lncRNAs) have been shown to function as central components of molecular machines that play fundamental roles in biology. While the number of annotated lncRNAs in mammalian genomes has greatly expanded, their functions remain largely uncharacterized. This is compounded by the fact that identifying lncRNA loci that have robust and reproducible phenotypes when mutated has been a challenge. Results: We previously generated a cohort of 20 lncRNA loci knockout mice. Here, we extend our initial study and provide a more detailed analysis of the highly conserved lncRNA locus, Taurine Upregulated Gene 1 (Tug1). We report that Tug1 knockout male mice are sterile with complete penetrance due to a low sperm count and abnormal sperm morphology. Having identified a lncRNA loci with a robust phenotype, we wanted to determine which, if any, potential elements contained in the Tug1 genomic region (DNA, RNA, protein, or the act of transcription) have activity. Using engineered mouse models and cell-based assays, we provide evidence that the Tug1 locus harbors three distinct regulatory activities - two noncoding and one coding: (i) a cis DNA repressor that regulates many neighboring genes, (ii) a lncRNA that can regulate genes by a trans-based function, and finally (iii) Tug1 encodes an evolutionary conserved peptide that when overexpressed impacts mitochondrial membrane potential. Conclusions: Our results reveal an essential role for the Tug1 locus in male fertility and uncover three distinct regulatory activities in the Tug1 locus, thus highlighting the complexity present at lncRNA loci.
- Published
- 2019
9. Rattus norvegicus BN/SHR liver and heart left ventricle ribosomal RNA depleted directional RNA sequencing
- Author
-
Wyler, E., van Heesch, S., Adami, E., Hubner, N., and Landthaler, M.
- Subjects
Cancer Research ,Heart Ventricles ,lcsh:Medicine ,BN-Lx ,SHR ,Species Specificity ,Rats, Inbred BN ,Rats, Inbred SHR ,Animals ,Sequencing ,RNA, Messenger ,lcsh:Science (General) ,lcsh:QH301-705.5 ,Sequence Analysis, RNA ,Myocardium ,lcsh:R ,Heart ,Rats ,Research Note ,Liver ,lcsh:Biology (General) ,Cardiovascular and Metabolic Diseases ,RNA, Ribosomal ,Rat ,RNA ,lcsh:Q1-390 - Abstract
Objective The spontaneously hypertensive rat strain is a frequently used disease model. In a previous study, we measured translational efficiency from this strain and BN-Lx animals. Here, we describe long RNA sequencing reads from ribosomal RNA depleted samples from the same animals. This data can be used to investigate splicing-related events. Results RNA was extracted from rat liver and heart left ventricle from BN-Lx and SHR/Ola rats in biological replicates. Ribosomal RNA was removed and the samples subjected to directional high-throughput RNA-sequencing. Read and alignment statistics indicate high quality of the data. The raw sequencing reads are freely available on the NCBI short read archive and can be used for further research on tissue and strain differences, or analysed together with other published high-throughput data from the same animals.
- Published
- 2017
10. Translational control of cardiac fibrosis
- Author
-
Chothani, S, Schafer, S, Adami, E, Viswanathan, S, Widjaja, A, Langley, S, Tan, J, Pua, CJ, D’Agostino, G, Van Heesch, S, Witte, F, Felkin, L, Christodoulou, E, Dong, J, Blachut, S, Patone, G, Barton, PJR, Hubner, N, Cook, S, and Rackham, OJL
- Abstract
Abstract Background Fibrosis is a common pathology in many cardiac disorders and is driven by the activation of resident fibroblasts. The global post-transcriptional mechanisms underlying fibroblast-to-myofibroblast conversion in the heart have not been explored. Methods Genome-wide changes of RNA transcription and translation during human cardiac fibroblast activation were monitored with RNA sequencing and ribosome profiling. We then used miRNA-and RNA-binding protein-based analyses to identify translational regulators of fibrogenic genes. To reveal post-transcriptional mechanisms in the human fibrotic heart, we then integrated our findings with cardiac ribosome occupancy levels of 30 dilated cardiomyopathy patients. Results We generated nucleotide-resolution translatome data during the TGFβ1-driven cellular transition of human cardiac fibroblasts to myofibroblasts. This identified dynamic changes of RNA transcription and translation at several time points during the fibrotic response, revealing transient and early-responder genes. Remarkably, about one-third of all changes in gene expression in activated fibroblasts are subject to translational regulation and dynamic variation in ribosome occupancy affects protein abundance independent of RNA levels. Targets of RNA-binding proteins were strongly enriched in post-transcriptionally regulated genes, suggesting genes such as MBNL2 can act as translational activators or repressors. Ribosome occupancy in the hearts of patients with dilated cardiomyopathy suggested an extensive post-transcriptional regulatory network underlying cardiac fibrosis. Key network hubs include RNA-binding proteins such as PUM2 and QKI that work in concert to regulate the translation of target transcripts in human diseased hearts. Conclusions We reveal widespread translational effects of TGFβ1 and define novel post-transcriptional events that control the fibroblast-to-myofibroblast transition. Regulatory networks that affect ribosome occupancy in fibroblasts are paralleled in human heart disease. Our findings show the central importance of translational control in fibrosis and highlight novel pathogenic mechanisms in heart failure.
- Published
- 2018
11. Improving mammalian genome scaffolding using large insert mate-pair next-generation sequencing
- Author
-
van Heesch, S., Kloosterman, W.P., Lansu, N., Ruzius, F.P., Levandowsky, E., Lee, C.C., Zhou, S., Goldstein, S., Schwartz, D.C., Harkins, T.T., Guryev, V., Cuppen, E., van Heesch, S., Kloosterman, W.P., Lansu, N., Ruzius, F.P., Levandowsky, E., Lee, C.C., Zhou, S., Goldstein, S., Schwartz, D.C., Harkins, T.T., Guryev, V., and Cuppen, E.
- Abstract
BACKGROUND: Paired-tag sequencing approaches are commonly used for the analysis of genome structure. However, mammalian genomes have a complex organization with a variety of repetitive elements that complicate comprehensive genome-wide analyses. RESULTS: Here, we systematically assessed the utility of paired-end and mate-pair (MP) next-generation sequencing libraries with insert sizes ranging from 170 bp to 25 kb, for genome coverage and for improving scaffolding of a mammalian genome (Rattus norvegicus). Despite a lower library complexity, large insert MP libraries (20 or 25 kb) provided very high physical genome coverage and were found to efficiently span repeat elements in the genome. Medium-sized (5, 8 or 15 kb) MP libraries were much more efficient for genome structure analysis than the more commonly used shorter insert paired-end and 3 kb MP libraries. Furthermore, the combination of medium- and large insert libraries resulted in a 3-fold increase in N50 in scaffolding processes. Finally, we show that our data can be used to evaluate and improve contig order and orientation in the current rat reference genome assembly. CONCLUSIONS: We conclude that applying combinations of mate-pair libraries with insert sizes that match the distributions of repetitive elements improves contig scaffolding and can contribute to the finishing of draft genomes., BACKGROUND: Paired-tag sequencing approaches are commonly used for the analysis of genome structure. However, mammalian genomes have a complex organization with a variety of repetitive elements that complicate comprehensive genome-wide analyses. RESULTS: Here, we systematically assessed the utility of paired-end and mate-pair (MP) next-generation sequencing libraries with insert sizes ranging from 170 bp to 25 kb, for genome coverage and for improving scaffolding of a mammalian genome (Rattus norvegicus). Despite a lower library complexity, large insert MP libraries (20 or 25 kb) provided very high physical genome coverage and were found to efficiently span repeat elements in the genome. Medium-sized (5, 8 or 15 kb) MP libraries were much more efficient for genome structure analysis than the more commonly used shorter insert paired-end and 3 kb MP libraries. Furthermore, the combination of medium- and large insert libraries resulted in a 3-fold increase in N50 in scaffolding processes. Finally, we show that our data can be used to evaluate and improve contig order and orientation in the current rat reference genome assembly. CONCLUSIONS: We conclude that applying combinations of mate-pair libraries with insert sizes that match the distributions of repetitive elements improves contig scaffolding and can contribute to the finishing of draft genomes.
- Published
- 2013
12. Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis
- Author
-
Low, T.Y., van Heesch, S., van den Toorn, H., Giansanti, P., Cristobal, A., Toonen, P., Schafer, S., Hubner, N., van Breukelen, B., Mohammed, S., Cuppen, E., Heck, A.J.R., Guryev, V., Low, T.Y., van Heesch, S., van den Toorn, H., Giansanti, P., Cristobal, A., Toonen, P., Schafer, S., Hubner, N., van Breukelen, B., Mohammed, S., Cuppen, E., Heck, A.J.R., and Guryev, V.
- Abstract
Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, and posttranscriptional levels. Here, we integrated in-depth transcriptome and proteome analyses of liver tissues from two rat strains to unravel the interactions within and between these layers. We obtained peptide evidence for 26,463 rat liver proteins. We validated 1,195 gene predictions, 83 splice events, 126 proteins with nonsynonymous variants, and 20 isoforms with nonsynonymous RNA editing. Quantitative RNA sequencing and proteomics data correlate highly between strains but poorly among each other, indicating extensive nongenetic regulation. Our multilevel analysis identified a genomic variant in the promoter of the most differentially expressed gene Cyp17a1, a previously reported top hit in genome-wide association studies for human hypertension, as a potential contributor to the hypertension phenotype in SHR rats. These results demonstrate the power of and need for integrative analysis for understanding genetic control of molecular dynamics and phenotypic diversity in a system-wide manner., Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, and posttranscriptional levels. Here, we integrated in-depth transcriptome and proteome analyses of liver tissues from two rat strains to unravel the interactions within and between these layers. We obtained peptide evidence for 26,463 rat liver proteins. We validated 1,195 gene predictions, 83 splice events, 126 proteins with nonsynonymous variants, and 20 isoforms with nonsynonymous RNA editing. Quantitative RNA sequencing and proteomics data correlate highly between strains but poorly among each other, indicating extensive nongenetic regulation. Our multilevel analysis identified a genomic variant in the promoter of the most differentially expressed gene Cyp17a1, a previously reported top hit in genome-wide association studies for human hypertension, as a potential contributor to the hypertension phenotype in SHR rats. These results demonstrate the power of and need for integrative analysis for understanding genetic control of molecular dynamics and phenotypic diversity in a system-wide manner.
- Published
- 2013
13. Nucleosomal DNA binding drives the recognition of H3K36-methylated nucleosomes by the PSIP1-PWWP domain
- Author
-
van Nuland, R., van Schaik, F.M., Simonis, M., van Heesch, S., Cuppen, E., Boelens, R., Timmers, H.M., van Ingen, H., van Nuland, R., van Schaik, F.M., Simonis, M., van Heesch, S., Cuppen, E., Boelens, R., Timmers, H.M., and van Ingen, H.
- Abstract
BACKGROUND: Recognition of histone modifications by specialized protein domains is a key step in the regulation of DNA-mediated processes like gene transcription. The structural basis of these interactions is usually studied using histone peptide models, neglecting the nucleosomal context. Here, we provide the structural and thermodynamic basis for the recognition of H3K36-methylated (H3K36me) nucleosomes by the PSIP1-PWWP domain, based on extensive mutational analysis, advanced nuclear magnetic resonance (NMR), and computational approaches. RESULTS: The PSIP1-PWWP domain binds H3K36me3 peptide and DNA with low affinity, through distinct, adjacent binding surfaces. PWWP binding to H3K36me nucleosomes is enhanced approximately 10,000-fold compared to a methylated peptide. Based on mutational analyses and NMR data, we derive a structure of the complex showing that the PWWP domain is bound to H3K36me nucleosomes through simultaneous interactions with both methylated histone tail and nucleosomal DNA. CONCLUSION: Concerted binding to the methylated histone tail and nucleosomal DNA underlies the high- affinity, specific recognition of H3K36me nucleosomes by the PSIP1-PWWP domain. We propose that this bipartite binding mechanism is a distinctive and general property in the recognition of histone modifications close to the nucleosome core., BACKGROUND: Recognition of histone modifications by specialized protein domains is a key step in the regulation of DNA-mediated processes like gene transcription. The structural basis of these interactions is usually studied using histone peptide models, neglecting the nucleosomal context. Here, we provide the structural and thermodynamic basis for the recognition of H3K36-methylated (H3K36me) nucleosomes by the PSIP1-PWWP domain, based on extensive mutational analysis, advanced nuclear magnetic resonance (NMR), and computational approaches. RESULTS: The PSIP1-PWWP domain binds H3K36me3 peptide and DNA with low affinity, through distinct, adjacent binding surfaces. PWWP binding to H3K36me nucleosomes is enhanced approximately 10,000-fold compared to a methylated peptide. Based on mutational analyses and NMR data, we derive a structure of the complex showing that the PWWP domain is bound to H3K36me nucleosomes through simultaneous interactions with both methylated histone tail and nucleosomal DNA. CONCLUSION: Concerted binding to the methylated histone tail and nucleosomal DNA underlies the high- affinity, specific recognition of H3K36me nucleosomes by the PSIP1-PWWP domain. We propose that this bipartite binding mechanism is a distinctive and general property in the recognition of histone modifications close to the nucleosome core.
- Published
- 2013
14. Systematic biases in DNA copy number originate from isolation procedures
- Author
-
van Heesch, S., Mokry, M., Boskova, V., Junker, W., Mehon, R., Toonen, P., de Bruijn, E., Shull, J.D., Aitman, T.J., Cuppen, E., Guryev, V., van Heesch, S., Mokry, M., Boskova, V., Junker, W., Mehon, R., Toonen, P., de Bruijn, E., Shull, J.D., Aitman, T.J., Cuppen, E., and Guryev, V.
- Abstract
BACKGROUND: The ability to accurately detect DNA copy number variation in both a sensitive and quantitative manner is important in many research areas. However, genome-wide DNA copy number analyses are complicated by variations in detection signal. RESULTS: While GC content has been used to correct for this, here we show that coverage biases are tissue-specific and independent of the detection method as demonstrated by next-generation sequencing and array CGH. Moreover, we show that DNA isolation stringency affects the degree of equimolar coverage and that the observed biases coincide with chromatin characteristics like gene expression, genomic isochores, and replication timing. CONCLUSION: These results indicate that chromatin organization is a main determinant for differential DNA retrieval. These findings are highly relevant for germline and somatic DNA copy number variation analyses., BACKGROUND: The ability to accurately detect DNA copy number variation in both a sensitive and quantitative manner is important in many research areas. However, genome-wide DNA copy number analyses are complicated by variations in detection signal. RESULTS: While GC content has been used to correct for this, here we show that coverage biases are tissue-specific and independent of the detection method as demonstrated by next-generation sequencing and array CGH. Moreover, we show that DNA isolation stringency affects the degree of equimolar coverage and that the observed biases coincide with chromatin characteristics like gene expression, genomic isochores, and replication timing. CONCLUSION: These results indicate that chromatin organization is a main determinant for differential DNA retrieval. These findings are highly relevant for germline and somatic DNA copy number variation analyses.
- Published
- 2013
15. Genetic basis of transcriptome differences between the founder strains of the rat HXB/BXH recombinant inbred panel
- Author
-
Simonis, M., Atanur, S.S., Linsen, S., Guryev, V., Ruzius, F.P., Game, L., Lansu, N., de Bruijn, E., van Heesch, S., Jones, S.J., Pravenec, M., Aitman, T.J., Cuppen, E., Simonis, M., Atanur, S.S., Linsen, S., Guryev, V., Ruzius, F.P., Game, L., Lansu, N., de Bruijn, E., van Heesch, S., Jones, S.J., Pravenec, M., Aitman, T.J., and Cuppen, E.
- Abstract
BACKGROUND: With the advent of next generation sequencing it has become possible to detect genomic variation on a large scale. However, predicting which genomic variants are damaging to gene function remains a challenge, as knowledge of the effects of genomic variation on gene expression is still limited. Recombinant inbred panels are powerful tools to study the cis and trans effects of genetic variation on molecular phenotypes such as gene expression. RESULTS: We generated a comprehensive inventory of genomic differences between the two founder strains of the rat HXB/BXH recombinant inbred panel: SHR/OlaIpcv and BN-Lx/Cub. We identified 3.2 million single nucleotide variants, 425,924 small insertions and deletions, 907 copy number changes and 1,094 large structural genetic variants. RNA-sequencing analyses on liver tissue of the two strains identified 532 differentially expressed genes and 40 alterations in transcript structure. We identified both coding and non-coding variants that correlate with differential expression and alternative splicing. Furthermore, structural variants, in particular gene duplications, show a strong correlation with transcriptome alterations. CONCLUSIONS: We show that the panel is a good model for assessing the genetic basis of phenotypic heterogeneity and for providing insights into possible underlying molecular mechanisms. Our results reveal a high diversity and complexity underlying quantitative and qualitative transcriptional differences., BACKGROUND: With the advent of next generation sequencing it has become possible to detect genomic variation on a large scale. However, predicting which genomic variants are damaging to gene function remains a challenge, as knowledge of the effects of genomic variation on gene expression is still limited. Recombinant inbred panels are powerful tools to study the cis and trans effects of genetic variation on molecular phenotypes such as gene expression. RESULTS: We generated a comprehensive inventory of genomic differences between the two founder strains of the rat HXB/BXH recombinant inbred panel: SHR/OlaIpcv and BN-Lx/Cub. We identified 3.2 million single nucleotide variants, 425,924 small insertions and deletions, 907 copy number changes and 1,094 large structural genetic variants. RNA-sequencing analyses on liver tissue of the two strains identified 532 differentially expressed genes and 40 alterations in transcript structure. We identified both coding and non-coding variants that correlate with differential expression and alternative splicing. Furthermore, structural variants, in particular gene duplications, show a strong correlation with transcriptome alterations. CONCLUSIONS: We show that the panel is a good model for assessing the genetic basis of phenotypic heterogeneity and for providing insights into possible underlying molecular mechanisms. Our results reveal a high diversity and complexity underlying quantitative and qualitative transcriptional differences.
- Published
- 2012
16. Homozygous and heterozygous p53 knockout rats develop metastasizing sarcomas with high frequency
- Author
-
van Boxtel, R., Kuiper, R., Toonen, P.W., van Heesch, S., Hermsen, R., de Bruin, A., Cuppen, E., van Boxtel, R., Kuiper, R., Toonen, P.W., van Heesch, S., Hermsen, R., de Bruin, A., and Cuppen, E.
- Abstract
The TP53 tumor suppressor gene is mutated in the majority of human cancers. Inactivation of p53 in a variety of animal models results in early-onset tumorigenesis, reflecting the importance of p53 as a gatekeeper tumor suppressor. We generated a mutant Tp53 allele in the rat using a target-selected mutagenesis approach. Here, we report that homozygosity for this allele results in complete loss of p53 function. Homozygous mutant rats predominantly develop sarcomas with an onset of 4 months of age with a high occurrence of pulmonary metastases. Heterozygous rats develop sarcomas starting at 8 months of age. Molecular analysis revealed that these tumors exhibit a loss-of-heterozygosity of the wild-type Tp53 allele. These unique features make this rat highly complementary to other rodent p53 knockout models and a versatile tool for investigating tumorigenesis processes as well as genotoxic studies., The TP53 tumor suppressor gene is mutated in the majority of human cancers. Inactivation of p53 in a variety of animal models results in early-onset tumorigenesis, reflecting the importance of p53 as a gatekeeper tumor suppressor. We generated a mutant Tp53 allele in the rat using a target-selected mutagenesis approach. Here, we report that homozygosity for this allele results in complete loss of p53 function. Homozygous mutant rats predominantly develop sarcomas with an onset of 4 months of age with a high occurrence of pulmonary metastases. Heterozygous rats develop sarcomas starting at 8 months of age. Molecular analysis revealed that these tumors exhibit a loss-of-heterozygosity of the wild-type Tp53 allele. These unique features make this rat highly complementary to other rodent p53 knockout models and a versatile tool for investigating tumorigenesis processes as well as genotoxic studies.
- Published
- 2011
17. Distribution and functional impact of DNA copy number variation in the rat.
- Author
-
Guryev, V., Saar, K., Adamovic, T., Verheul, M., van Heesch, S., Cook, S., Pravenec, M., Aitman, T., Jacob, H., Shull, J.D., Hubner, N., Cuppen, E., Guryev, V., Saar, K., Adamovic, T., Verheul, M., van Heesch, S., Cook, S., Pravenec, M., Aitman, T., Jacob, H., Shull, J.D., Hubner, N., and Cuppen, E.
- Abstract
The abundance and dynamics of copy number variants (CNVs) in mammalian genomes poses new challenges in the identification of their impact on natural and disease phenotypes. We used computational and experimental methods to catalog CNVs in rat and found that they share important functional characteristics with those in human. In addition, 113 one-to-one orthologous genes overlap CNVs in both human and rat, 80 of which are implicated in human disease. CNVs are nonrandomly distributed throughout the genome. Chromosome 18 is a cold spot for CNVs as well as evolutionary rearrangements and segmental duplications, suggesting stringent selective mechanisms underlying CNV genesis or maintenance. By exploiting gene expression data available for rat recombinant inbred lines, we established the functional relationship of CNVs underlying 22 expression quantitative trait loci. These characteristics make the rat an excellent model for studying phenotypic effects of structural variation in relation to human complex traits and disease., The abundance and dynamics of copy number variants (CNVs) in mammalian genomes poses new challenges in the identification of their impact on natural and disease phenotypes. We used computational and experimental methods to catalog CNVs in rat and found that they share important functional characteristics with those in human. In addition, 113 one-to-one orthologous genes overlap CNVs in both human and rat, 80 of which are implicated in human disease. CNVs are nonrandomly distributed throughout the genome. Chromosome 18 is a cold spot for CNVs as well as evolutionary rearrangements and segmental duplications, suggesting stringent selective mechanisms underlying CNV genesis or maintenance. By exploiting gene expression data available for rat recombinant inbred lines, we established the functional relationship of CNVs underlying 22 expression quantitative trait loci. These characteristics make the rat an excellent model for studying phenotypic effects of structural variation in relation to human complex traits and disease.
- Published
- 2008
18. Evolutionary origins and interactomes of human, young microproteins and small peptides translated from short open reading frames
- Author
-
Sandmann, C.L., Schulz, J.F., Ruiz-Orera, J., Kirchner, M., Ziehm, M., Adami, E., Marczenke, M., Christ, A., Liebe, N., Greiner, J., Schoenenberger, A., Mücke, M.B., Liang, N., Moritz, R.L., Sun, Z., Deutsch, E.W., Gotthardt, M., Mudge, J.M., Prensner, J.R., Willnow, T.E., Mertins, P., van Heesch, S., and Hubner, N.
- Subjects
ribosome profiling ,short peptides ,de novo genes ,PRISMA ,Cell Biology ,Cardiovascular and Metabolic Diseases ,short ORFs ,microproteins ,Technology Platforms ,primate-specific proteins ,protein evolution ,short linear motifs, SLiMs ,protein interactome ,Molecular Biology - Abstract
All species continuously evolve short open reading frames (sORFs) that can be templated for protein synthesis and may provide raw materials for evolutionary adaptation. We analyzed the evolutionary origins of 7,264 recently cataloged human sORFs and found that most were evolutionarily young and had emerged de novo. We additionally identified 221 previously missed sORFs potentially translated into peptides of up to 15 amino acids—all of which are smaller than the smallest human microprotein annotated to date. To investigate the bioactivity of sORF-encoded small peptides and young microproteins, we subjected 266 candidates to a mass-spectrometry-based interactome screen with motif resolution. Based on these interactomes and additional cellular assays, we can associate several candidates with mRNA splicing, translational regulation, and endocytosis. Our work provides insights into the evolutionary origins and interaction potential of young and small proteins, thereby helping to elucidate this underexplored territory of the human proteome.
- Full Text
- View/download PDF
19. Microproteins in cancer: identification, biological functions, and clinical implications.
- Author
-
Hofman DA, Prensner JR, and van Heesch S
- Abstract
Cancer continues to be a major global health challenge, accounting for 10 million deaths annually worldwide. Since the inception of genome-wide cancer sequencing studies 20 years ago, a core set of ~700 oncogenes and tumor suppressor genes has become the basis for cancer research. However, this research has been based largely on an understanding that the human genome encodes ~19 500 protein-coding genes. Complementing this genomic landscape, recent advances have described numerous microproteins which are now poised to redefine our understanding of oncogenic processes and open new avenues for therapeutic intervention. This review explores the emerging evidence for microprotein involvement in cancer mechanisms and discusses potential therapeutic applications, with an emphasis on highlighting recent advances in the field., Competing Interests: Declaration of interests J.R.P. has received research honoraria from Novartis Biosciences and is a paid consultant for ProFound Therapeutics. D.A.H. and S.v.H. declare no competing interests., (Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
20. Evolution of translational control and the emergence of genes and open reading frames in human and non-human primate hearts.
- Author
-
Ruiz-Orera J, Miller DC, Greiner J, Genehr C, Grammatikaki A, Blachut S, Mbebi J, Patone G, Myronova A, Adami E, Dewani N, Liang N, Hummel O, Muecke MB, Hildebrandt TB, Fritsch G, Schrade L, Zimmermann WH, Kondova I, Diecke S, van Heesch S, and Hübner N
- Subjects
- Animals, Humans, Species Specificity, Transcriptome, Gene Expression Profiling methods, Induced Pluripotent Stem Cells metabolism, Ribosomes metabolism, Ribosomes genetics, Primates genetics, Cells, Cultured, Open Reading Frames genetics, Protein Biosynthesis genetics, Evolution, Molecular, Myocytes, Cardiac metabolism
- Abstract
Evolutionary innovations can be driven by changes in the rates of RNA translation and the emergence of new genes and small open reading frames (sORFs). In this study, we characterized the transcriptional and translational landscape of the hearts of four primate and two rodent species through integrative ribosome and transcriptomic profiling, including adult left ventricle tissues and induced pluripotent stem cell-derived cardiomyocyte cell cultures. We show here that the translational efficiencies of subunits of the mitochondrial oxidative phosphorylation chain complexes IV and V evolved rapidly across mammalian evolution. Moreover, we discovered hundreds of species-specific and lineage-specific genomic innovations that emerged during primate evolution in the heart, including 551 genes, 504 sORFs and 76 evolutionarily conserved genes displaying human-specific cardiac-enriched expression. Overall, our work describes the evolutionary processes and mechanisms that have shaped cardiac transcription and translation in recent primate evolution and sheds light on how these can contribute to cardiac development and disease., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
21. High-quality peptide evidence for annotating non-canonical open reading frames as human proteins.
- Author
-
Deutsch EW, Kok LW, Mudge JM, Ruiz-Orera J, Fierro-Monti I, Sun Z, Abelin JG, Alba MM, Aspden JL, Bazzini AA, Bruford EA, Brunet MA, Calviello L, Carr SA, Carvunis AR, Chothani S, Clauwaert J, Dean K, Faridi P, Frankish A, Hubner N, Ingolia NT, Magrane M, Martin MJ, Martinez TF, Menschaert G, Ohler U, Orchard S, Rackham O, Roucou X, Slavoff SA, Valen E, Wacholder A, Weissman JS, Wu W, Xie Z, Choudhary J, Bassani-Sternberg M, Vizcaíno JA, Ternette N, Moritz RL, Prensner JR, and van Heesch S
- Abstract
A major scientific drive is to characterize the protein-coding genome as it provides the primary basis for the study of human health. But the fundamental question remains: what has been missed in prior genomic analyses? Over the past decade, the translation of non-canonical open reading frames (ncORFs) has been observed across human cell types and disease states, with major implications for proteomics, genomics, and clinical science. However, the impact of ncORFs has been limited by the absence of a large-scale understanding of their contribution to the human proteome. Here, we report the collaborative efforts of stakeholders in proteomics, immunopeptidomics, Ribo-seq ORF discovery, and gene annotation, to produce a consensus landscape of protein-level evidence for ncORFs. We show that at least 25% of a set of 7,264 ncORFs give rise to translated gene products, yielding over 3,000 peptides in a pan-proteome analysis encompassing 3.8 billion mass spectra from 95,520 experiments. With these data, we developed an annotation framework for ncORFs and created public tools for researchers through GENCODE and PeptideAtlas. This work will provide a platform to advance ncORF-derived proteins in biomedical discovery and, beyond humans, diverse animals and plants where ncORFs are similarly observed., Competing Interests: Declaration of interests J.R.P. has received research honoraria from Novartis Biosciences and is a paid consultant for ProFound Therapeutics. J.G.A. is a paid consultant for Enara Bio and Moderna. J.L.A. is an advisor to Microneedle Solutions. T.F.M. is a consultant for and holds equity in Velia Therapeutics. J.S.W. is an advisor and holds equity in Velia Therapeutics. G.M. is co-founder and CSO of OHMX.bio. S.A.C. is a member of the scientific advisory boards of Kymera, PTM BioLabs, Seer and PrognomIQ. N.T.I. hold equity in Velia Therapeutics and holds equity and serves as a scientific advisor to Tevard Biosciences. P.F. is a member of the scientific advisory board of Infinitopes. A.-R. C. is a member of the advisory board of ProFound Therapeutics.
- Published
- 2024
- Full Text
- View/download PDF
22. Targeting pediatric cancers via T-cell recognition of the monomorphic MHC class I-related protein MR1.
- Author
-
Cornel AM, van der Sman L, van Dinter JT, Arrabito M, Dunnebach E, van Hoesel M, Kluiver TA, Lopes AP, Dautzenberg NMM, Dekker L, van Rijn JM, van den Beemt DAMH, Buhl JL, du Chatinier A, Barneh F, Lu Y, Lo Nigro L, Krippner-Heidenreich A, Sebestyén Z, Kuball J, Hulleman E, Drost J, van Heesch S, Heidenreich OT, Peng WC, and Nierkens S
- Subjects
- Humans, Child, Histocompatibility Antigens Class I, Receptors, Antigen, T-Cell, Histocompatibility Antigens Class II, Minor Histocompatibility Antigens, Leukemia, Neoplasms, Germ Cell and Embryonal, Glioma
- Abstract
Human leukocyte antigen (HLA) restriction of conventional T-cell targeting introduces complexity in generating T-cell therapy strategies for patients with cancer with diverse HLA-backgrounds. A subpopulation of atypical, major histocompatibility complex-I related protein 1 (MR1)-restricted T-cells, distinctive from mucosal-associated invariant T-cells (MAITs), was recently identified recognizing currently unidentified MR1-presented cancer-specific metabolites. It is hypothesized that the MC.7.G5 MR1T-clone has potential as a pan-cancer, pan-population T-cell immunotherapy approach. These cells are irresponsive to healthy tissue while conferring T-cell receptor(TCR) dependent, HLA-independent cytotoxicity to a wide range of adult cancers. Studies so far are limited to adult malignancies. Here, we investigated the potential of MR1-targeting cellular therapy strategies in pediatric cancer. Bulk RNA sequencing data of primary pediatric tumors were analyzed to assess MR1 expression. In vitro pediatric tumor models were subsequently screened to evaluate their susceptibility to engineered MC.7.G5 TCR-expressing T-cells. Targeting capacity was correlated with qPCR-based MR1 mRNA and protein overexpression. RNA expression of MR1 in primary pediatric tumors varied widely within and between tumor entities. Notably, embryonal tumors exhibited significantly lower MR1 expression than other pediatric tumors. In line with this, most screened embryonal tumors displayed resistance to MR1T-targeting in vitro MR1T susceptibility was observed particularly in pediatric leukemia and diffuse midline glioma models. This study demonstrates potential of MC.7.G5 MR1T-cell immunotherapy in pediatric leukemias and diffuse midline glioma, while activity against embryonal tumors was limited. The dismal prognosis associated with relapsed/refractory leukemias and high-grade brain tumors highlights the promise to improve survival rates of children with these cancers., Competing Interests: Competing interests: ZS and JK are inventors on different patents for γδ TCR sequences, recognition mechanisms and isolation strategies. JK is scientific cofounder and shareholder of Gadeta (www.gadeta.nl). The remaining authors declare no competing interests., (© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)
- Published
- 2024
- Full Text
- View/download PDF
23. Translation of non-canonical open reading frames as a cancer cell survival mechanism in childhood medulloblastoma.
- Author
-
Hofman DA, Ruiz-Orera J, Yannuzzi I, Murugesan R, Brown A, Clauser KR, Condurat AL, van Dinter JT, Engels SAG, Goodale A, van der Lugt J, Abid T, Wang L, Zhou KN, Vogelzang J, Ligon KL, Phoenix TN, Roth JA, Root DE, Hubner N, Golub TR, Bandopadhayay P, van Heesch S, and Prensner JR
- Subjects
- Humans, Protein Biosynthesis, Open Reading Frames genetics, Cell Survival genetics, Medulloblastoma genetics, Cerebellar Neoplasms genetics
- Abstract
A hallmark of high-risk childhood medulloblastoma is the dysregulation of RNA translation. Currently, it is unknown whether medulloblastoma dysregulates the translation of putatively oncogenic non-canonical open reading frames (ORFs). To address this question, we performed ribosome profiling of 32 medulloblastoma tissues and cell lines and observed widespread non-canonical ORF translation. We then developed a stepwise approach using multiple CRISPR-Cas9 screens to elucidate non-canonical ORFs and putative microproteins implicated in medulloblastoma cell survival. We determined that multiple lncRNA-ORFs and upstream ORFs (uORFs) exhibited selective functionality independent of main coding sequences. A microprotein encoded by one of these ORFs, ASNSD1-uORF or ASDURF, was upregulated, associated with MYC-family oncogenes, and promoted medulloblastoma cell survival through engagement with the prefoldin-like chaperone complex. Our findings underscore the fundamental importance of non-canonical ORF translation in medulloblastoma and provide a rationale to include these ORFs in future studies seeking to define new cancer targets., Competing Interests: Declaration of interests K.L.L. reports the following interests: equity in Travera; research funds from Bristol Myers Squibb, SEngine Precision Medicine, Multiple Myeloma Research Foundation, and Eli Lilly and Company; and being a consultant or on the scientific advisory board for Bristol Myers Squibb, Travera, and IntegraGen. P.B. receives grant funding from Novartis Institute of Biomedical Research, and has received grant funding from Deerfield Therapeutics, both for unrelated projects. P.B. has also served on a paid advisory board for qed Therapeutics, unrelated to this work. D.E.R. receives research funding from members of the Functional Genomics Consortium (AbbVie, BMS, Jannsen, Merck, and Vir) and is a director of Addgene, Inc., (Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
24. What Can Ribo-Seq, Immunopeptidomics, and Proteomics Tell Us About the Noncanonical Proteome?
- Author
-
Prensner JR, Abelin JG, Kok LW, Clauser KR, Mudge JM, Ruiz-Orera J, Bassani-Sternberg M, Moritz RL, Deutsch EW, and van Heesch S
- Subjects
- Humans, Proteomics methods, Ribosome Profiling, Ribosomes metabolism, Open Reading Frames, Proteome metabolism, Protein Biosynthesis
- Abstract
Ribosome profiling (Ribo-Seq) has proven transformative for our understanding of the human genome and proteome by illuminating thousands of noncanonical sites of ribosome translation outside the currently annotated coding sequences (CDSs). A conservative estimate suggests that at least 7000 noncanonical ORFs are translated, which, at first glance, has the potential to expand the number of human protein CDSs by 30%, from ∼19,500 annotated CDSs to over 26,000 annotated CDSs. Yet, additional scrutiny of these ORFs has raised numerous questions about what fraction of them truly produce a protein product and what fraction of those can be understood as proteins according to conventional understanding of the term. Adding further complication is the fact that published estimates of noncanonical ORFs vary widely by around 30-fold, from several thousand to several hundred thousand. The summation of this research has left the genomics and proteomics communities both excited by the prospect of new coding regions in the human genome but searching for guidance on how to proceed. Here, we discuss the current state of noncanonical ORF research, databases, and interpretation, focusing on how to assess whether a given ORF can be said to be "protein coding.", Competing Interests: Conflict of interest The authors declare no competing interests., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
25. Dynamic interplay between RPL3- and RPL3L-containing ribosomes modulates mitochondrial activity in the mammalian heart.
- Author
-
Milenkovic I, Santos Vieira HG, Lucas MC, Ruiz-Orera J, Patone G, Kesteven S, Wu J, Feneley M, Espadas G, Sabidó E, Hübner N, van Heesch S, Völkers M, and Novoa EM
- Subjects
- Animals, Mice, Muscle, Skeletal metabolism, Protein Biosynthesis, Heart, Mitochondria metabolism, Ribosomal Proteins genetics, Ribosomal Proteins metabolism, Ribosomes genetics, Ribosomes metabolism
- Abstract
The existence of naturally occurring ribosome heterogeneity is now a well-acknowledged phenomenon. However, whether this heterogeneity leads to functionally diverse 'specialized ribosomes' is still a controversial topic. Here, we explore the biological function of RPL3L (uL3L), a ribosomal protein (RP) paralogue of RPL3 (uL3) that is exclusively expressed in skeletal muscle and heart tissues, by generating a viable homozygous Rpl3l knockout mouse strain. We identify a rescue mechanism in which, upon RPL3L depletion, RPL3 becomes up-regulated, yielding RPL3-containing ribosomes instead of RPL3L-containing ribosomes that are typically found in cardiomyocytes. Using both ribosome profiling (Ribo-seq) and a novel orthogonal approach consisting of ribosome pulldown coupled to nanopore sequencing (Nano-TRAP), we find that RPL3L modulates neither translational efficiency nor ribosome affinity towards a specific subset of transcripts. In contrast, we show that depletion of RPL3L leads to increased ribosome-mitochondria interactions in cardiomyocytes, which is accompanied by a significant increase in ATP levels, potentially as a result of fine-tuning of mitochondrial activity. Our results demonstrate that the existence of tissue-specific RP paralogues does not necessarily lead to enhanced translation of specific transcripts or modulation of translational output. Instead, we reveal a complex cellular scenario in which RPL3L modulates the expression of RPL3, which in turn affects ribosomal subcellular localization and, ultimately, mitochondrial activity., (© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Published
- 2023
- Full Text
- View/download PDF
26. Evolution and implications of de novo genes in humans.
- Author
-
Broeils LA, Ruiz-Orera J, Snel B, Hubner N, and van Heesch S
- Subjects
- Humans, Exons, Open Reading Frames
- Abstract
Genes and translated open reading frames (ORFs) that emerged de novo from previously non-coding sequences provide species with opportunities for adaptation. When aberrantly activated, some human-specific de novo genes and ORFs have disease-promoting properties-for instance, driving tumour growth. Thousands of putative de novo coding sequences have been described in humans, but we still do not know what fraction of those ORFs has readily acquired a function. Here, we discuss the challenges and controversies surrounding the detection, mechanisms of origin, annotation, validation and characterization of de novo genes and ORFs. Through manual curation of literature and databases, we provide a thorough table with most de novo genes reported for humans to date. We re-evaluate each locus by tracing the enabling mutations and list proposed disease associations, protein characteristics and supporting evidence for translation and protein detection. This work will support future explorations of de novo genes and ORFs in humans., (© 2023. Springer Nature Limited.)
- Published
- 2023
- Full Text
- View/download PDF
27. What can Ribo-seq and proteomics tell us about the non-canonical proteome?
- Author
-
Prensner JR, Abelin JG, Kok LW, Clauser KR, Mudge JM, Ruiz-Orera J, Bassani-Sternberg M, Deutsch EW, and van Heesch S
- Abstract
Ribosome profiling (Ribo-seq) has proven transformative for our understanding of the human genome and proteome by illuminating thousands of non-canonical sites of ribosome translation outside of the currently annotated coding sequences (CDSs). A conservative estimate suggests that at least 7,000 non-canonical open reading frames (ORFs) are translated, which, at first glance, has the potential to expand the number of human protein-coding sequences by 30%, from ∼19,500 annotated CDSs to over 26,000. Yet, additional scrutiny of these ORFs has raised numerous questions about what fraction of them truly produce a protein product and what fraction of those can be understood as proteins according to conventional understanding of the term. Adding further complication is the fact that published estimates of non-canonical ORFs vary widely by around 30-fold, from several thousand to several hundred thousand. The summation of this research has left the genomics and proteomics communities both excited by the prospect of new coding regions in the human genome, but searching for guidance on how to proceed. Here, we discuss the current state of non-canonical ORF research, databases, and interpretation, focusing on how to assess whether a given ORF can be said to be "protein-coding"., In Brief: The human genome encodes thousands of non-canonical open reading frames (ORFs) in addition to protein-coding genes. As a nascent field, many questions remain regarding non-canonical ORFs. How many exist? Do they encode proteins? What level of evidence is needed for their verification? Central to these debates has been the advent of ribosome profiling (Ribo-seq) as a method to discern genome-wide ribosome occupancy, and immunopeptidomics as a method to detect peptides that are processed and presented by MHC molecules and not observed in traditional proteomics experiments. This article provides a synthesis of the current state of non-canonical ORF research and proposes standards for their future investigation and reporting., Highlights: Combined use of Ribo-seq and proteomics-based methods enables optimal confidence in detecting non-canonical ORFs and their protein products.Ribo-seq can provide more sensitive detection of non-canonical ORFs, but data quality and analytical pipelines will impact results.Non-canonical ORF catalogs are diverse and span both high-stringency and low-stringency ORF nominations.A framework for standardized non-canonical ORF evidence will advance the research field.
- Published
- 2023
- Full Text
- View/download PDF
28. Translation of non-canonical open reading frames as a cancer cell survival mechanism in childhood medulloblastoma.
- Author
-
Hofman DA, Ruiz-Orera J, Yannuzzi I, Murugesan R, Brown A, Clauser KR, Condurat AL, van Dinter JT, Engels SAG, Goodale A, van der Lugt J, Abid T, Wang L, Zhou KN, Vogelzang J, Ligon KL, Phoenix TN, Roth JA, Root DE, Hubner N, Golub TR, Bandopadhayay P, van Heesch S, and Prensner JR
- Abstract
A hallmark of high-risk childhood medulloblastoma is the dysregulation of RNA translation. Currently, it is unknown whether medulloblastoma dysregulates the translation of putatively oncogenic non-canonical open reading frames. To address this question, we performed ribosome profiling of 32 medulloblastoma tissues and cell lines and observed widespread non-canonical ORF translation. We then developed a step-wise approach to employ multiple CRISPR-Cas9 screens to elucidate functional non-canonical ORFs implicated in medulloblastoma cell survival. We determined that multiple lncRNA-ORFs and upstream open reading frames (uORFs) exhibited selective functionality independent of the main coding sequence. One of these, ASNSD1-uORF or ASDURF, was upregulated, associated with the MYC family oncogenes, and was required for medulloblastoma cell survival through engagement with the prefoldin-like chaperone complex. Our findings underscore the fundamental importance of non-canonical ORF translation in medulloblastoma and provide a rationale to include these ORFs in future cancer genomics studies seeking to define new cancer targets., Competing Interests: Declaration of interests K.L.L. reports the following interests: equity in Travera; research funds from Bristol Myers Squibb, SEngine Precision Medicine, Multiple Myeloma Research Foundation and Eli Lilly and Company; and being a consultant or on the scientific advisory board for Bristol Myers Squibb, Travera, and IntegraGen. P.B. receives grant funding from Novartis Institute of Biomedical Research, and has received grant funding from Deerfield Therapeutics, both for unrelated projects. P.B. has also served on a paid advisory board for QED Therapeutics, unrelated to this work. D.E.R. receives research funding from members of the Functional Genomics Consortium (Abbvie, BMS, Jannsen, Merck, Vir), and is a director of Addgene, Inc.
- Published
- 2023
- Full Text
- View/download PDF
29. Evolutionary origins and interactomes of human, young microproteins and small peptides translated from short open reading frames.
- Author
-
Sandmann CL, Schulz JF, Ruiz-Orera J, Kirchner M, Ziehm M, Adami E, Marczenke M, Christ A, Liebe N, Greiner J, Schoenenberger A, Muecke MB, Liang N, Moritz RL, Sun Z, Deutsch EW, Gotthardt M, Mudge JM, Prensner JR, Willnow TE, Mertins P, van Heesch S, and Hubner N
- Subjects
- Humans, Open Reading Frames, Proteomics, Micropeptides, Peptides genetics, Protein Biosynthesis
- Abstract
All species continuously evolve short open reading frames (sORFs) that can be templated for protein synthesis and may provide raw materials for evolutionary adaptation. We analyzed the evolutionary origins of 7,264 recently cataloged human sORFs and found that most were evolutionarily young and had emerged de novo. We additionally identified 221 previously missed sORFs potentially translated into peptides of up to 15 amino acids-all of which are smaller than the smallest human microprotein annotated to date. To investigate the bioactivity of sORF-encoded small peptides and young microproteins, we subjected 266 candidates to a mass-spectrometry-based interactome screen with motif resolution. Based on these interactomes and additional cellular assays, we can associate several candidates with mRNA splicing, translational regulation, and endocytosis. Our work provides insights into the evolutionary origins and interaction potential of young and small proteins, thereby helping to elucidate this underexplored territory of the human proteome., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
30. Epigenetic modulation of neuroblastoma enhances T cell and NK cell immunogenicity by inducing a tumor-cell lineage switch.
- Author
-
Cornel AM, Dunnebach E, Hofman DA, Das S, Sengupta S, van den Ham F, Wienke J, Strijker JGM, van den Beemt DAMH, Essing AHW, Koopmans B, Engels SAG, Lo Presti V, Szanto CS, George RE, Molenaar JJ, van Heesch S, Dierselhuis MP, and Nierkens S
- Subjects
- Humans, Cell Lineage, Histocompatibility Antigens Class I, T-Lymphocytes, Cytotoxic, Histone Deacetylase Inhibitors pharmacology, Histone Deacetylase Inhibitors therapeutic use, Epigenesis, Genetic, Killer Cells, Natural, Neuroblastoma drug therapy, Neuroblastoma genetics
- Abstract
Background: Immunotherapy in high-risk neuroblastoma (HR-NBL) does not live up to its full potential due to inadequate (adaptive) immune engagement caused by the extensive immunomodulatory capacity of HR-NBL. We aimed to tackle one of the most notable immunomodulatory processes in neuroblastoma (NBL), absence of major histocompatibility complex class I (MHC-I) surface expression, a process greatly limiting cytotoxic T cell engagement. We and others have previously shown that MHC-I expression can be induced by cytokine-driven immune modulation. Here, we aimed to identify tolerable pharmacological repurposing strategies to upregulate MHC-I expression and therewith enhance T cell immunogenicity in NBL., Methods: Drug repurposing libraries were screened to identify compounds enhancing MHC-I surface expression in NBL cells using high-throughput flow cytometry analyses optimized for adherent cells. The effect of positive hits was confirmed in a panel of NBL cell lines and patient-derived organoids. Compound-treated NBL cell lines and organoids were cocultured with preferentially expressed antigen of melanoma (PRAME)-reactive tumor-specific T cells and healthy-donor natural killer (NK) cells to determine the in vitro effect on T cell and NK cell cytotoxicity. Additional immunomodulatory effects of histone deacetylase inhibitors (HDACi) were identified by transcriptome and translatome analysis of treated organoids., Results: Drug library screening revealed MHC-I upregulation by inhibitor of apoptosis inhibitor (IAPi)- and HDACi drug classes. The effect of IAPi was limited due to repression of nuclear factor kappa B (NFκB) pathway activity in NBL, while the MHC-I-modulating effect of HDACi was widely translatable to a panel of NBL cell lines and patient-derived organoids. Pretreatment of NBL cells with the HDACi entinostat enhanced the cytotoxic capacity of tumor-specific T cells against NBL in vitro, which coincided with increased expression of additional players regulating T cell cytotoxicity (eg, TAP1/2 and immunoproteasome subunits). Moreover, MICA and MICB, important in NK cell cytotoxicity, were also increased by entinostat exposure. Intriguingly, this increase in immunogenicity was accompanied by a shift toward a more mesenchymal NBL cell lineage., Conclusions: This study indicates the potential of combining (immuno)therapy with HDACi to enhance both T cell-driven and NKcell-driven immune responses in patients with HR-NBL., Competing Interests: Competing interests: None declared., (© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)
- Published
- 2022
- Full Text
- View/download PDF
31. Translational readthrough of nonsense mutant TP53 by mRNA incorporation of 5-Fluorouridine.
- Author
-
Palomar-Siles M, Heldin A, Zhang M, Strandgren C, Yurevych V, van Dinter JT, Engels SAG, Hofman DA, Öhlin S, Meineke B, Bykov VJN, van Heesch S, and Wiman KG
- Subjects
- Humans, RNA, Messenger genetics, RNA, Messenger metabolism, Codon, Nonsense genetics, Protein Biosynthesis, Tumor Suppressor Protein p53 genetics, Tumor Suppressor Protein p53 metabolism, Neoplasms genetics
- Abstract
TP53 nonsense mutations in cancer produce truncated inactive p53 protein. We show that 5-FU metabolite 5-Fluorouridine (FUr) induces full-length p53 in human tumor cells carrying R213X nonsense mutant TP53. Ribosome profiling visualized translational readthrough at the R213X premature stop codon and demonstrated that FUr-induced readthrough is less permissive for canonical stop codon readthrough compared to aminoglycoside G418. FUr is incorporated into mRNA and can potentially base-pair with guanine, allowing insertion of Arg tRNA at the TP53 R213X UGA premature stop codon and translation of full-length wild-type p53. We confirmed that full-length p53 rescued by FUr triggers tumor cell death by apoptosis. FUr also restored full-length p53 in TP53 R213X mutant human tumor xenografts in vivo. Thus, we demonstrate a novel strategy for therapeutic rescue of nonsense mutant TP53 and suggest that FUr should be explored for treatment of patients with TP53 nonsense mutant tumors., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
32. Integrative analysis of macrophage ribo-Seq and RNA-Seq data define glucocorticoid receptor regulated inflammatory response genes into distinct regulatory classes.
- Author
-
Ansari SA, Dantoft W, Ruiz-Orera J, Syed AP, Blachut S, van Heesch S, Hübner N, and Uhlenhaut NH
- Abstract
Glucocorticoids such as dexamethasone (Dex) are widely used to treat both acute and chronic inflammatory conditions. They regulate immune responses by dampening cell-mediated immunity in a glucocorticoid receptor (GR)-dependent manner, by suppressing the expression of pro-inflammatory cytokines and chemokines and by stimulating the expression of anti-inflammatory mediators. Despite its evident clinical benefit, the mechanistic underpinnings of the gene regulatory networks transcriptionally controlled by GR in a context-specific manner remain mysterious. Next generation sequencing methods such mRNA sequencing (RNA-seq) and Ribosome profiling (ribo-seq) provide tools to investigate the transcriptional and post-transcriptional mechanisms that govern gene expression. Here, we integrate matched RNA-seq data with ribo-seq data from human acute monocytic leukemia (THP-1) cells treated with the TLR4 ligand lipopolysaccharide (LPS) and with Dex, to investigate the global transcriptional and translational regulation (translational efficiency, ΔTE) of Dex-responsive genes. We find that the expression of most of the Dex-responsive genes are regulated at both the transcriptional and the post-transcriptional level, with the transcriptional changes intensified on the translational level. Overrepresentation pathway analysis combined with STRING protein network analysis and manual functional exploration, identified these genes to encode immune effectors and immunomodulators that contribute to macrophage-mediated immunity and to the maintenance of macrophage-mediated immune homeostasis. Further research into the translational regulatory network underlying the GR anti-inflammatory response could pave the way for the development of novel immunomodulatory therapeutic regimens with fewer undesirable side effects., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2022 The Authors.)
- Published
- 2022
- Full Text
- View/download PDF
33. Aging-regulated TUG1 is dispensable for endothelial cell function.
- Author
-
Gimbel AT, Koziarek S, Theodorou K, Schulz JF, Stanicek L, Kremer V, Ali T, Günther S, Kumar S, Jo H, Hübner N, Maegdefessel L, Dimmeler S, van Heesch S, and Boon RA
- Subjects
- Aging, Amino Acids, Animals, Apoptosis genetics, Human Umbilical Vein Endothelial Cells, Humans, Mice, RNA, Messenger, RNA, Long Noncoding genetics, Taurine, Vascular Endothelial Growth Factor A
- Abstract
The evolutionary conserved Taurine Upregulated Gene 1 (TUG1) is a ubiquitously expressed gene that is one of the highest expressed genes in human and rodent endothelial cells (ECs). We here show that TUG1 expression decreases significantly in aging mouse carotid artery ECs and human ECs in vitro, indicating a potential role in the aging endothelial vasculature system. We therefore investigated if, and how, TUG1 might function in aging ECs, but despite extensive phenotyping found no alterations in basal EC proliferation, apoptosis, barrier function, migration, mitochondrial function, or monocyte adhesion upon TUG1 silencing in vitro. TUG1 knockdown did slightly and significantly decrease cumulative sprout length upon vascular endothelial growth factor A stimulation in human umbilical vein endothelial cells (HUVECs), though TUG1-silenced HUVECs displayed no transcriptome-wide mRNA expression changes explaining this effect. Further, ectopic expression of the highly conserved and recently discovered 153 amino acid protein translated from certain TUG1 transcript isoforms did not alter angiogenic sprouting in vitro. Our data show that, despite a high expression and strong evolutionary conservation of both the TUG1 locus and the protein sequence it encodes, TUG1 does not seem to play a major role in basic endothelial cell function., Competing Interests: The authors have declared that no competing interest exist
- Published
- 2022
- Full Text
- View/download PDF
34. Standardized annotation of translated open reading frames.
- Author
-
Mudge JM, Ruiz-Orera J, Prensner JR, Brunet MA, Calvet F, Jungreis I, Gonzalez JM, Magrane M, Martinez TF, Schulz JF, Yang YT, Albà MM, Aspden JL, Baranov PV, Bazzini AA, Bruford E, Martin MJ, Calviello L, Carvunis AR, Chen J, Couso JP, Deutsch EW, Flicek P, Frankish A, Gerstein M, Hubner N, Ingolia NT, Kellis M, Menschaert G, Moritz RL, Ohler U, Roucou X, Saghatelian A, Weissman JS, and van Heesch S
- Subjects
- Molecular Sequence Annotation, Open Reading Frames, Protein Biosynthesis, Ribosomes metabolism
- Published
- 2022
- Full Text
- View/download PDF
35. Cap analysis of gene expression reveals alternative promoter usage in a rat model of hypertension.
- Author
-
Dahale S, Ruiz-Orera J, Silhavy J, Hübner N, van Heesch S, Pravenec M, and Atanur SS
- Subjects
- Animals, Female, Male, Rats, Rats, Inbred SHR, Gene Expression Profiling methods, Hypertension genetics, Hypertension metabolism, Promoter Regions, Genetic genetics, Sequence Analysis, RNA methods, Transcription, Genetic genetics
- Abstract
The role of alternative promoter usage in tissue-specific gene expression has been well established; however, its role in complex diseases is poorly understood. We performed cap analysis of gene expression (CAGE) sequencing from the left ventricle of a rat model of hypertension, the spontaneously hypertensive rat (SHR), and a normotensive strain, Brown Norway to understand the role of alternative promoter usage in complex disease. We identified 26,560 CAGE-defined transcription start sites in the rat left ventricle, including 1,970 novel cardiac transcription start sites. We identified 28 genes with alternative promoter usage between SHR and Brown Norway, which could lead to protein isoforms differing at the amino terminus between two strains and 475 promoter switching events altering the length of the 5' UTR. We found that the shift in Insr promoter usage was significantly associated with insulin levels and blood pressure within a panel of HXB/BXH recombinant inbred rat strains, suggesting that hyperinsulinemia due to insulin resistance might lead to hypertension in SHR. Our study provides a preliminary evidence of alternative promoter usage in complex diseases., (© 2022 Dahale et al.)
- Published
- 2022
- Full Text
- View/download PDF
36. Multifunctional RNA-binding proteins influence mRNA abundance and translational efficiency of distinct sets of target genes.
- Author
-
Schneider-Lunitz V, Ruiz-Orera J, Hubner N, and van Heesch S
- Subjects
- Computational Biology, Humans, Myocardium cytology, RNA, Messenger metabolism, RNA-Binding Proteins metabolism, Gene Expression Regulation genetics, Protein Biosynthesis genetics, RNA, Messenger genetics, RNA-Binding Proteins genetics
- Abstract
RNA-binding proteins (RBPs) can regulate more than a single aspect of RNA metabolism. We searched for such previously undiscovered multifunctionality within a set of 143 RBPs, by defining the predictive value of RBP abundance for the transcription and translation levels of known RBP target genes across 80 human hearts. This led us to newly associate 27 RBPs with cardiac translational regulation in vivo. Of these, 21 impacted both RNA expression and translation, albeit for virtually independent sets of target genes. We highlight a subset of these, including G3BP1, PUM1, UCHL5, and DDX3X, where dual regulation is achieved through differential affinity for target length, by which separate biological processes are controlled. Like the RNA helicase DDX3X, the known splicing factors EFTUD2 and PRPF8-all identified as multifunctional RBPs by our analysis-selectively influence target translation rates depending on 5' UTR structure. Our analyses identify dozens of RBPs as being multifunctional and pinpoint potential novel regulators of translation, postulating unanticipated complexity of protein-RNA interactions at consecutive stages of gene expression., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2021
- Full Text
- View/download PDF
37. Truncated titin proteins and titin haploinsufficiency are targets for functional recovery in human cardiomyopathy due to TTN mutations.
- Author
-
Fomin A, Gärtner A, Cyganek L, Tiburcy M, Tuleta I, Wellers L, Folsche L, Hobbach AJ, von Frieling-Salewsky M, Unger A, Hucke A, Koser F, Kassner A, Sielemann K, Streckfuß-Bömeke K, Hasenfuss G, Goedel A, Laugwitz KL, Moretti A, Gummert JF, Dos Remedios CG, Reinecke H, Knöll R, van Heesch S, Hubner N, Zimmermann WH, Milting H, and Linke WA
- Subjects
- Haploinsufficiency, Humans, Mutation, Myocytes, Cardiac metabolism, Tissue Donors, Cardiomyopathies genetics, Connectin genetics, Connectin metabolism, Heart Transplantation, Induced Pluripotent Stem Cells metabolism
- Abstract
Heterozygous truncating variants in TTN (TTNtv), the gene coding for titin, cause dilated cardiomyopathy (DCM), but the underlying pathomechanisms are unclear and disease management remains uncertain. Truncated titin proteins have not yet been considered as a contributor to disease development. Here, we studied myocardial tissues from nonfailing donor hearts and 113 patients with end-stage DCM for titin expression and identified a TTNtv in 22 patients with DCM (19.5%). We directly demonstrate titin haploinsufficiency in TTNtv-DCM hearts and the absence of compensatory changes in the alternative titin isoform Cronos. Twenty-one TTNtv-DCM hearts in our cohort showed stable expression of truncated titin proteins. Expression was variable, up to half of the total titin protein pool, and negatively correlated with patient age at heart transplantation. Truncated titin proteins were not detected in sarcomeres but were present in intracellular aggregates, with deregulated ubiquitin-dependent protein quality control. We produced human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs), comparing wild-type controls to cells with a patient-derived, prototypical A-band-TTNtv or a CRISPR-Cas9–generated M-band-TTNtv. TTNtv-hiPSC-CMs showed reduced wild-type titin expression and contained truncated titin proteins whose proportion increased upon inhibition of proteasomal activity. In engineered heart muscle generated from hiPSC-CMs, depressed contractility caused by TTNtv could be reversed by correction of the mutation using CRISPR-Cas9, eliminating truncated titin proteins and raising wild-type titin content. Functional improvement also occurred when wild-type titin protein content was increased by proteasome inhibition. Our findings reveal the major pathomechanisms of TTNtv-DCM and can be exploited for new therapies to treat TTNtv-related cardiomyopathies.
- Published
- 2021
- Full Text
- View/download PDF
38. A trans locus causes a ribosomopathy in hypertrophic hearts that affects mRNA translation in a protein length-dependent fashion.
- Author
-
Witte F, Ruiz-Orera J, Mattioli CC, Blachut S, Adami E, Schulz JF, Schneider-Lunitz V, Hummel O, Patone G, Mücke MB, Šilhavý J, Heinig M, Bottolo L, Sanchis D, Vingron M, Chekulaeva M, Pravenec M, Hubner N, and van Heesch S
- Subjects
- Animals, Cardiomegaly metabolism, Cardiomegaly pathology, Gene Expression Profiling, Gene Expression Regulation, Genetic Variation, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Myocardium metabolism, Myocardium pathology, Organelle Biogenesis, RNA, Messenger metabolism, RNA, Small Nucleolar metabolism, Rats, Rats, Inbred SHR, Rats, Transgenic, Ribosomal Proteins metabolism, Ribosomes metabolism, Ribosomes pathology, Saccharomyces cerevisiae genetics, Saccharomyces cerevisiae metabolism, Sarcomeres metabolism, Sarcomeres pathology, Cardiomegaly genetics, Peptide Chain Initiation, Translational, Quantitative Trait Loci, RNA, Messenger genetics, RNA, Small Nucleolar genetics, Ribosomal Proteins genetics, Ribosomes genetics
- Abstract
Background: Little is known about the impact of trans-acting genetic variation on the rates with which proteins are synthesized by ribosomes. Here, we investigate the influence of such distant genetic loci on the efficiency of mRNA translation and define their contribution to the development of complex disease phenotypes within a panel of rat recombinant inbred lines., Results: We identify several tissue-specific master regulatory hotspots that each control the translation rates of multiple proteins. One of these loci is restricted to hypertrophic hearts, where it drives a translatome-wide and protein length-dependent change in translational efficiency, altering the stoichiometric translation rates of sarcomere proteins. Mechanistic dissection of this locus across multiple congenic lines points to a translation machinery defect, characterized by marked differences in polysome profiles and misregulation of the small nucleolar RNA SNORA48. Strikingly, from yeast to humans, we observe reproducible protein length-dependent shifts in translational efficiency as a conserved hallmark of translation machinery mutants, including those that cause ribosomopathies. Depending on the factor mutated, a pre-existing negative correlation between protein length and translation rates could either be enhanced or reduced, which we propose to result from mRNA-specific imbalances in canonical translation initiation and reinitiation rates., Conclusions: We show that distant genetic control of mRNA translation is abundant in mammalian tissues, exemplified by a single genomic locus that triggers a translation-driven molecular mechanism. Our work illustrates the complexity through which genetic variation can drive phenotypic variability between individuals and thereby contribute to complex disease.
- Published
- 2021
- Full Text
- View/download PDF
39. A human ESC-based screen identifies a role for the translated lncRNA LINC00261 in pancreatic endocrine differentiation.
- Author
-
Gaertner B, van Heesch S, Schneider-Lunitz V, Schulz JF, Witte F, Blachut S, Nguyen S, Wong R, Matta I, Hübner N, and Sander M
- Subjects
- CRISPR-Cas Systems, Cells, Cultured, Gene Deletion, Gene Expression Regulation, Developmental, Gene Knockout Techniques, HEK293 Cells, Human Embryonic Stem Cells, Humans, Islets of Langerhans embryology, Male, Protein Biosynthesis, RNA, Long Noncoding genetics, Transcription Factors metabolism, Cell Differentiation physiology, Islets of Langerhans cytology, RNA, Long Noncoding physiology
- Abstract
Long noncoding RNAs (lncRNAs) are a heterogenous group of RNAs, which can encode small proteins. The extent to which developmentally regulated lncRNAs are translated and whether the produced microproteins are relevant for human development is unknown. Using a human embryonic stem cell (hESC)-based pancreatic differentiation system, we show that many lncRNAs in direct vicinity of lineage-determining transcription factors (TFs) are dynamically regulated, predominantly cytosolic, and highly translated. We genetically ablated ten such lncRNAs, most of them translated, and found that nine are dispensable for pancreatic endocrine cell development. However, deletion of LINC00261 diminishes insulin
+ cells, in a manner independent of the nearby TF FOXA2 . One-by-one disruption of each of LINC00261 's open reading frames suggests that the RNA, rather than the produced microproteins, is required for endocrine development. Our work highlights extensive translation of lncRNAs during hESC pancreatic differentiation and provides a blueprint for dissection of their coding and noncoding roles., Competing Interests: BG, Sv, VS, JS, FW, SB, SN, RW, IM, NH, MS No competing interests declared, (© 2020, Gaertner et al.)- Published
- 2020
- Full Text
- View/download PDF
40. Widespread Translational Control of Fibrosis in the Human Heart by RNA-Binding Proteins.
- Author
-
Chothani S, Schäfer S, Adami E, Viswanathan S, Widjaja AA, Langley SR, Tan J, Wang M, Quaife NM, Jian Pua C, D'Agostino G, Guna Shekeran S, George BL, Lim S, Yiqun Cao E, van Heesch S, Witte F, Felkin LE, Christodoulou EG, Dong J, Blachut S, Patone G, Barton PJR, Hubner N, Cook SA, and Rackham OJL
- Subjects
- Cells, Cultured, Fibroblasts metabolism, Fibroblasts pathology, Fibrosis genetics, Fibrosis metabolism, Fibrosis pathology, Gene Expression Profiling methods, Heart Diseases pathology, Humans, Sequence Analysis, RNA methods, Transforming Growth Factor beta1 genetics, Transforming Growth Factor beta1 metabolism, Heart Diseases genetics, Heart Diseases metabolism, Myocytes, Cardiac metabolism, Myocytes, Cardiac pathology, Protein Biosynthesis genetics, RNA-Binding Proteins genetics
- Abstract
Background: Fibrosis is a common pathology in many cardiac disorders and is driven by the activation of resident fibroblasts. The global posttranscriptional mechanisms underlying fibroblast-to-myofibroblast conversion in the heart have not been explored., Methods: Genome-wide changes of RNA transcription and translation during human cardiac fibroblast activation were monitored with RNA sequencing and ribosome profiling. We then used RNA-binding protein-based analyses to identify translational regulators of fibrogenic genes. The integration with cardiac ribosome occupancy levels of 30 dilated cardiomyopathy patients demonstrates that these posttranscriptional mechanisms are also active in the diseased fibrotic human heart., Results: We generated nucleotide-resolution translatome data during the transforming growth factor β1-driven cellular transition of human cardiac fibroblasts to myofibroblasts. This identified dynamic changes of RNA transcription and translation at several time points during the fibrotic response, revealing transient and early-responder genes. Remarkably, about one-third of all changes in gene expression in activated fibroblasts are subject to translational regulation, and dynamic variation in ribosome occupancy affects protein abundance independent of RNA levels. Targets of RNA-binding proteins were strongly enriched in posttranscriptionally regulated genes, suggesting genes such as MBNL2 can act as translational activators or repressors. Ribosome occupancy in the hearts of patients with dilated cardiomyopathy suggested the same posttranscriptional regulatory network was underlying cardiac fibrosis. Key network hubs include RNA-binding proteins such as Pumilio RNA binding family member 2 (PUM2) and Quaking (QKI) that work in concert to regulate the translation of target transcripts in human diseased hearts. Furthermore, silencing of both PUM2 and QKI inhibits the transition of fibroblasts toward profibrotic myofibroblasts in response to transforming growth factor β1., Conclusions: We reveal widespread translational effects of transforming growth factor β1 and define novel posttranscriptional regulatory networks that control the fibroblast-to-myofibroblast transition. These networks are active in human heart disease, and silencing of hub genes limits fibroblast activation. Our findings show the central importance of translational control in fibrosis and highlight novel pathogenic mechanisms in heart failure.
- Published
- 2019
- Full Text
- View/download PDF
41. The Translational Landscape of the Human Heart.
- Author
-
van Heesch S, Witte F, Schneider-Lunitz V, Schulz JF, Adami E, Faber AB, Kirchner M, Maatz H, Blachut S, Sandmann CL, Kanda M, Worth CL, Schafer S, Calviello L, Merriott R, Patone G, Hummel O, Wyler E, Obermayer B, Mücke MB, Lindberg EL, Trnka F, Memczak S, Schilling M, Felkin LE, Barton PJR, Quaife NM, Vanezis K, Diecke S, Mukai M, Mah N, Oh SJ, Kurtz A, Schramm C, Schwinge D, Sebode M, Harakalova M, Asselbergs FW, Vink A, de Weger RA, Viswanathan S, Widjaja AA, Gärtner-Rommel A, Milting H, Dos Remedios C, Knosalla C, Mertins P, Landthaler M, Vingron M, Linke WA, Seidman JG, Seidman CE, Rajewsky N, Ohler U, Cook SA, and Hubner N
- Subjects
- Adolescent, Adult, Aged, Animals, Codon genetics, Female, Gene Expression Regulation, HEK293 Cells, Humans, Infant, Male, Mice, Mice, Inbred C57BL, Middle Aged, Open Reading Frames genetics, RNA, Circular genetics, RNA, Circular metabolism, RNA, Long Noncoding genetics, RNA, Long Noncoding metabolism, RNA, Messenger genetics, RNA, Messenger metabolism, Rats, Ribosomes genetics, Ribosomes metabolism, Young Adult, Myocardium metabolism, Protein Biosynthesis
- Abstract
Gene expression in human tissue has primarily been studied on the transcriptional level, largely neglecting translational regulation. Here, we analyze the translatomes of 80 human hearts to identify new translation events and quantify the effect of translational regulation. We show extensive translational control of cardiac gene expression, which is orchestrated in a process-specific manner. Translation downstream of predicted disease-causing protein-truncating variants appears to be frequent, suggesting inefficient translation termination. We identify hundreds of previously undetected microproteins, expressed from lncRNAs and circRNAs, for which we validate the protein products in vivo. The translation of microproteins is not restricted to the heart and prominent in the translatomes of human kidney and liver. We associate these microproteins with diverse cellular processes and compartments and find that many locate to the mitochondria. Importantly, dozens of microproteins are translated from lncRNAs with well-characterized noncoding functions, indicating previously unrecognized biology., (Copyright © 2019 Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
42. IL-11 is a crucial determinant of cardiovascular fibrosis.
- Author
-
Schafer S, Viswanathan S, Widjaja AA, Lim WW, Moreno-Moral A, DeLaughter DM, Ng B, Patone G, Chow K, Khin E, Tan J, Chothani SP, Ye L, Rackham OJL, Ko NSJ, Sahib NE, Pua CJ, Zhen NTG, Xie C, Wang M, Maatz H, Lim S, Saar K, Blachut S, Petretto E, Schmidt S, Putoczki T, Guimarães-Camboa N, Wakimoto H, van Heesch S, Sigmundsson K, Lim SL, Soon JL, Chao VTT, Chua YL, Tan TE, Evans SM, Loh YJ, Jamal MH, Ong KK, Chua KC, Ong BH, Chakaramakkil MJ, Seidman JG, Seidman CE, Hubner N, Sin KYK, and Cook SA
- Subjects
- Animals, Autocrine Communication, Cells, Cultured, Female, Fibroblasts drug effects, Fibroblasts metabolism, Fibroblasts pathology, Fibrosis chemically induced, Heart, Humans, Interleukin-11 antagonists & inhibitors, Interleukin-11 genetics, Interleukin-11 Receptor alpha Subunit deficiency, Interleukin-11 Receptor alpha Subunit genetics, Kidney pathology, Male, Mice, Mice, Knockout, Middle Aged, Myocardium metabolism, Myocardium pathology, Organ Dysfunction Scores, Protein Biosynthesis, Transforming Growth Factor beta1 metabolism, Transforming Growth Factor beta1 pharmacology, Transgenes genetics, Cardiovascular System metabolism, Cardiovascular System pathology, Fibrosis metabolism, Fibrosis pathology, Interleukin-11 metabolism
- Abstract
Fibrosis is a common pathology in cardiovascular disease. In the heart, fibrosis causes mechanical and electrical dysfunction and in the kidney, it predicts the onset of renal failure. Transforming growth factor β1 (TGFβ1) is the principal pro-fibrotic factor, but its inhibition is associated with side effects due to its pleiotropic roles. We hypothesized that downstream effectors of TGFβ1 in fibroblasts could be attractive therapeutic targets and lack upstream toxicity. Here we show, using integrated imaging-genomics analyses of primary human fibroblasts, that upregulation of interleukin-11 (IL-11) is the dominant transcriptional response to TGFβ1 exposure and required for its pro-fibrotic effect. IL-11 and its receptor (IL11RA) are expressed specifically in fibroblasts, in which they drive non-canonical, ERK-dependent autocrine signalling that is required for fibrogenic protein synthesis. In mice, fibroblast-specific Il11 transgene expression or Il-11 injection causes heart and kidney fibrosis and organ failure, whereas genetic deletion of Il11ra1 protects against disease. Therefore, inhibition of IL-11 prevents fibroblast activation across organs and species in response to a range of important pro-fibrotic stimuli. These results reveal a central role of IL-11 in fibrosis and we propose that inhibition of IL-11 is a potential therapeutic strategy to treat fibrotic diseases.
- Published
- 2017
- Full Text
- View/download PDF
43. Molecular dissection of germline chromothripsis in a developmental context using patient-derived iPS cells.
- Author
-
Middelkamp S, van Heesch S, Braat AK, de Ligt J, van Iterson M, Simonis M, van Roosmalen MJ, Kelder MJ, Kruisselbrink E, Hochstenbach R, Verbeek NE, Ippel EF, Adolfs Y, Pasterkamp RJ, Kloosterman WP, Kuijk EW, and Cuppen E
- Subjects
- Dihydrouracil Dehydrogenase (NADP) genetics, Forkhead Transcription Factors genetics, Gene Expression Regulation, Humans, Induced Pluripotent Stem Cells metabolism, Leukocytes metabolism, Neurons metabolism, Nuclear Proteins genetics, Repressor Proteins genetics, Twist-Related Protein 1 genetics, Chromothripsis, Germ-Line Mutation, Transcriptome
- Abstract
Background: Germline chromothripsis causes complex genomic rearrangements that are likely to affect multiple genes and their regulatory contexts. The contribution of individual rearrangements and affected genes to the phenotypes of patients with complex germline genomic rearrangements is generally unknown., Methods: To dissect the impact of germline chromothripsis in a relevant developmental context, we performed trio-based RNA expression analysis on blood cells, induced pluripotent stem cells (iPSCs), and iPSC-derived neuronal cells from a patient with de novo germline chromothripsis and both healthy parents. In addition, Hi-C and 4C-seq experiments were performed to determine the effects of the genomic rearrangements on transcription regulation of genes in the proximity of the breakpoint junctions., Results: Sixty-seven genes are located within 1 Mb of the complex chromothripsis rearrangements involving 17 breakpoints on four chromosomes. We find that three of these genes (FOXP1, DPYD, and TWIST1) are both associated with developmental disorders and differentially expressed in the patient. Interestingly, the effect on TWIST1 expression was exclusively detectable in the patient's iPSC-derived neuronal cells, stressing the need for studying developmental disorders in the biologically relevant context. Chromosome conformation capture analyses show that TWIST1 lost genomic interactions with several enhancers due to the chromothripsis event, which likely led to deregulation of TWIST1 expression and contributed to the patient's craniosynostosis phenotype., Conclusions: We demonstrate that a combination of patient-derived iPSC differentiation and trio-based molecular profiling is a powerful approach to improve the interpretation of pathogenic complex genomic rearrangements. Here we have applied this approach to identify misexpression of TWIST1, FOXP1, and DPYD as key contributors to the complex congenital phenotype resulting from germline chromothripsis rearrangements.
- Published
- 2017
- Full Text
- View/download PDF
44. Titin-truncating variants affect heart function in disease cohorts and the general population.
- Author
-
Schafer S, de Marvao A, Adami E, Fiedler LR, Ng B, Khin E, Rackham OJ, van Heesch S, Pua CJ, Kui M, Walsh R, Tayal U, Prasad SK, Dawes TJ, Ko NS, Sim D, Chan LL, Chin CW, Mazzarotto F, Barton PJ, Kreuchwig F, de Kleijn DP, Totman T, Biffi C, Tee N, Rueckert D, Schneider V, Faber A, Regitz-Zagrosek V, Seidman JG, Seidman CE, Linke WA, Kovalik JP, O'Regan D, Ware JS, Hubner N, and Cook SA
- Subjects
- Animals, Cardiomyopathy, Dilated pathology, Case-Control Studies, Cohort Studies, High-Throughput Nucleotide Sequencing, Humans, Male, Rats, Cardiomyopathy, Dilated genetics, Connectin genetics, Genetic Variation genetics, Heart physiology
- Abstract
Titin-truncating variants (TTNtv) commonly cause dilated cardiomyopathy (DCM). TTNtv are also encountered in ∼1% of the general population, where they may be silent, perhaps reflecting allelic factors. To better understand TTNtv, we integrated TTN allelic series, cardiac imaging and genomic data in humans and studied rat models with disparate TTNtv. In patients with DCM, TTNtv throughout titin were significantly associated with DCM. Ribosomal profiling in rat showed the translational footprint of premature stop codons in Ttn, TTNtv-position-independent nonsense-mediated degradation of the mutant allele and a signature of perturbed cardiac metabolism. Heart physiology in rats with TTNtv was unremarkable at baseline but became impaired during cardiac stress. In healthy humans, machine-learning-based analysis of high-resolution cardiac imaging showed TTNtv to be associated with eccentric cardiac remodeling. These data show that TTNtv have molecular and physiological effects on the heart across species, with a continuum of expressivity in health and disease., Competing Interests: S.A.C. consults for Illumina.
- Published
- 2017
- Full Text
- View/download PDF
45. Epigenetics and Control of RNAs.
- Author
-
Maatz H, van Heesch S, Kreuchwig F, Faber A, Adami E, Hubner N, and Heinig M
- Subjects
- Chromatin Immunoprecipitation, Chromosome Mapping methods, Gene Expression, High-Throughput Nucleotide Sequencing, Histones metabolism, Inbreeding, Quantitative Trait Loci, Recombination, Genetic, Computational Biology methods, Epigenesis, Genetic, Epigenomics methods, RNA genetics, Software
- Abstract
Histone modifications are epigenetic marks that fundamentally impact the regulation of gene expression. Integrating histone modification information in the analysis of gene expression traits (eQTL mapping) has been shown to significantly enhance the prediction of eQTLs. In this chapter, we describe (1) how to perform quantitative trait locus (QTL) analysis using histone modification levels as traits and (2) how to integrate these data with information on RNA expression for the elucidation of the epigenetic control of transcript levels. We will provide a comprehensive introduction into the topic, describe in detail how ChIP-seq data are analyzed and elaborate on how to integrate ChIP-seq and RNA-seq data from a segregating disease animal model for the identification of the epigenetic control of RNA expression.
- Published
- 2017
- Full Text
- View/download PDF
46. The PLETHORA Gene Regulatory Network Guides Growth and Cell Differentiation in Arabidopsis Roots.
- Author
-
Santuari L, Sanchez-Perez GF, Luijten M, Rutjens B, Terpstra I, Berke L, Gorte M, Prasad K, Bao D, Timmermans-Hereijgers JL, Maeo K, Nakamura K, Shimotohno A, Pencik A, Novak O, Ljung K, van Heesch S, de Bruijn E, Cuppen E, Willemsen V, Mähönen AP, Lukowitz W, Snel B, de Ridder D, Scheres B, and Heidstra R
- Subjects
- Arabidopsis Proteins genetics, Arabidopsis Proteins metabolism, Transcription Factors genetics, Transcription Factors metabolism, Arabidopsis cytology, Arabidopsis genetics, Cell Differentiation genetics, Gene Expression Regulation, Plant, Gene Regulatory Networks genetics, Plant Roots cytology, Plant Roots genetics
- Abstract
Organ formation in animals and plants relies on precise control of cell state transitions to turn stem cell daughters into fully differentiated cells. In plants, cells cannot rearrange due to shared cell walls. Thus, differentiation progression and the accompanying cell expansion must be tightly coordinated across tissues. PLETHORA (PLT) transcription factor gradients are unique in their ability to guide the progression of cell differentiation at different positions in the growing Arabidopsis thaliana root, which contrasts with well-described transcription factor gradients in animals specifying distinct cell fates within an essentially static context. To understand the output of the PLT gradient, we studied the gene set transcriptionally controlled by PLTs. Our work reveals how the PLT gradient can regulate cell state by region-specific induction of cell proliferation genes and repression of differentiation. Moreover, PLT targets include major patterning genes and autoregulatory feedback components, enforcing their role as master regulators of organ development., (© 2016 American Society of Plant Biologists. All rights reserved.)
- Published
- 2016
- Full Text
- View/download PDF
47. Translational regulation shapes the molecular landscape of complex disease phenotypes.
- Author
-
Schafer S, Adami E, Heinig M, Rodrigues KEC, Kreuchwig F, Silhavy J, van Heesch S, Simaite D, Rajewsky N, Cuppen E, Pravenec M, Vingron M, Cook SA, and Hubner N
- Subjects
- Animals, Male, Phenotype, Proteome, Rats, Inbred BN, Rats, Inbred SHR, Sequence Analysis, RNA, Gene Expression Regulation, Hypertension metabolism, Liver metabolism, Myocardium metabolism, Ribosomes metabolism
- Abstract
The extent of translational control of gene expression in mammalian tissues remains largely unknown. Here we perform genome-wide RNA sequencing and ribosome profiling in heart and liver tissues to investigate strain-specific translational regulation in the spontaneously hypertensive rat (SHR/Ola). For the most part, transcriptional variation is equally apparent at the translational level and there is limited evidence of translational buffering. Remarkably, we observe hundreds of strain-specific differences in translation, almost doubling the number of differentially expressed genes. The integration of genetic, transcriptional and translational data sets reveals distinct signatures in 3'UTR variation, RNA-binding protein motifs and miRNA expression associated with translational regulation of gene expression. We show that a large number of genes associated with heart and liver traits in human genome-wide association studies are primarily translationally regulated. Capturing interindividual differences in the translated genome will lead to new insights into the genes and regulatory pathways underlying disease phenotypes.
- Published
- 2015
- Full Text
- View/download PDF
48. Lack of major genome instability in tumors of p53 null rats.
- Author
-
Hermsen R, Toonen P, Kuijk E, Youssef SA, Kuiper R, van Heesch S, de Bruin A, Cuppen E, and Simonis M
- Subjects
- Animals, Animals, Genetically Modified, Comparative Genomic Hybridization, DNA Copy Number Variations, Disease Models, Animal, Female, Gene Knockdown Techniques, Heterozygote, Homozygote, Male, Mutation, Neoplasms pathology, Rats, Telomere metabolism, Tumor Suppressor Protein p53 genetics, Tumor Suppressor Protein p53 metabolism, Genomic Instability, Neoplasms genetics, Tumor Suppressor Protein p53 deficiency
- Abstract
Tumorigenesis is often associated with loss of tumor suppressor genes (such as TP53), genomic instability and telomere lengthening. Previously, we generated and characterized a rat p53 knockout model in which the homozygous rats predominantly develop hemangiosarcomas whereas the heterozygous rats mainly develop osteosarcomas. Using genome-wide analyses, we find that the tumors that arise in the heterozygous and homozygous Tp53C273X mutant animals are also different in their genomic instability profiles. While p53 was fully inactivated in both heterozygous and homozygous knockout rats, tumors from homozygous animals show very limited aneuploidy and low degrees of somatic copy number variation as compared to the tumors from heterozygous animals. In addition, complex structural rearrangements such as chromothripsis and breakage-fusion-bridge cycles were never found in tumors from homozygous animals, while these were readily detectable in tumors from heterozygous animals. Finally, we measured telomere length and telomere lengthening pathway activity and found that tumors of homozygous animals have longer telomeres but do not show clear telomerase or alternative lengthening of telomeres (ALT) activity differences as compared to the tumors from heterozygous animals. Taken together, our results demonstrate that host p53 status in this rat p53 knockout model has a large effect on both tumor type and genomic instability characteristics, where full loss of functional p53 is not the main driver of large-scale structural variations. Our results also suggest that chromothripsis primarily occurs under p53 heterozygous rather than p53 null conditions.
- Published
- 2015
- Full Text
- View/download PDF
49. Genomic and functional overlap between somatic and germline chromosomal rearrangements.
- Author
-
van Heesch S, Simonis M, van Roosmalen MJ, Pillalamarri V, Brand H, Kuijk EW, de Luca KL, Lansu N, Braat AK, Menelaou A, Hao W, Korving J, Snijder S, van der Veken LT, Hochstenbach R, Knegt AC, Duran K, Renkens I, Alekozai N, Jager M, Vergult S, Menten B, de Bruijn E, Boymans S, Ippel E, van Binsbergen E, Talkowski ME, Lichtenbelt K, Cuppen E, and Kloosterman WP
- Subjects
- Animals, Chromosome Breakpoints, DNA-Binding Proteins genetics, Forkhead Transcription Factors genetics, HEK293 Cells, Humans, MicroRNAs genetics, Repressor Proteins genetics, Transcription Factors genetics, Zebrafish, Chromosome Aberrations, Chromosomes, Human genetics, Congenital Abnormalities genetics, Gene Rearrangement, Genome, Human, Germ-Line Mutation
- Abstract
Genomic rearrangements are a common cause of human congenital abnormalities. However, their origin and consequences are poorly understood. We performed molecular analysis of two patients with congenital disease who carried de novo genomic rearrangements. We found that the rearrangements in both patients hit genes that are recurrently rearranged in cancer (ETV1, FOXP1, and microRNA cluster C19MC) and drive formation of fusion genes similar to those described in cancer. Subsequent analysis of a large set of 552 de novo germline genomic rearrangements underlying congenital disorders revealed enrichment for genes rearranged in cancer and overlap with somatic cancer breakpoints. Breakpoints of common (inherited) germline structural variations also overlap with cancer breakpoints but are depleted for cancer genes. We propose that the same genomic positions are prone to genomic rearrangements in germline and soma but that timing and context of breakage determines whether developmental defects or cancer are promoted., (Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF
50. Large-scale identification of coregulated enhancer networks in the adult human brain.
- Author
-
Vermunt MW, Reinink P, Korving J, de Bruijn E, Creyghton PM, Basak O, Geeven G, Toonen PW, Lansu N, Meunier C, van Heesch S, Clevers H, de Laat W, Cuppen E, and Creyghton MP
- Subjects
- Epigenesis, Genetic, Genome, Human, Histones genetics, Histones metabolism, Humans, Organ Specificity, Parkinson Disease metabolism, Brain metabolism, Enhancer Elements, Genetic, Gene Regulatory Networks, Parkinson Disease genetics
- Abstract
Understanding the complexity of the human brain and its functional diversity remain a major challenge. Distinct anatomical regions are involved in an array of processes, including organismal homeostasis, cognitive functions, and susceptibility to neurological pathologies, many of which define our species. Distal enhancers have emerged as key regulatory elements that acquire histone modifications in a cell- and species-specific manner, thus enforcing specific gene expression programs. Here, we survey the epigenomic landscape of promoters and cis-regulatory elements in 136 regions of the adult human brain. We identify a total of 83,553 promoter-distal H3K27ac-enriched regions showing global characteristics of brain enhancers. We use coregulation of enhancer elements across many distinct regions of the brain to uncover functionally distinct networks at high resolution and link these networks to specific neuroglial functions. Furthermore, we use these data to understand the relevance of noncoding genomic variations previously linked to Parkinson's disease incidence.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.