Spinal cord injury (SCI) is an extremely serious condition which leads to a drastic decrease on patient mobility. Neural tissue engineering (NTE) has been trying to promote solutions by combining different materials such as polymers, cells, and specific architectures to assist regeneration of the injured tissue. This work objective is the conceptualization and manufacture of a multilayer multifunctional nanocomposite and study its cytocompatibility with neural stem cells (NSCs) envisioning NTE application. For that, vertically aligned carbon nanotubes (VACNTs) were grown by thermal chemical vapor deposition onto a silica substrate (SiO₂). Then, as-grown VACNTs were transferred onto polydimethylsiloxane (PDMS) creating a VACNT-PDMS layer with a stable interface, maintaining CNT alignment, confirmed by scanning electron microscopy. By transferring VACNTs onto this PDMS layer, flexibility and handling of the nanocomposite was obtained eliminating some problems presented by native VACNTs when coupled with their native substrate which is rigid. However, the nanocomposite VACNT/PDMS is inert and requires a component that mimics the neural microenvironment. So, a third polymeric layer was needed. To integrate this layer. VACNT and PDMS underwent a series of surface treatments (i.e., ultraviolet coupled with ozone (UV/O3) and oxygen (O₂) plasma) leading to changes on wettability and surface energy assessed indirectly by water contact angle (WCA) and attenuated-total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used to identify chemical changes post treatments. O₂ plasma treatment led to most significative change in wettability with the introduction of silanol (Si-OH) groups on PDMS and carboxylic (COOH) groups on CNTs. For the third layer two strategies were employed. The first (S1) relied on the creation of a hydrogel composed of gelatin and alginate methacrylamide (GelMA and AlgMA) capable of photo- and -ionic crosslink. The hydrogel showed to support NSC proliferation and viability, however, when transferred to the VACNT-PDMS layer the hydrogel would delaminate. The alternative solution (S2) consisted in the crosslink of gelatin and alginate induced by 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide coupled with N-hydroxysuccinimide on top of a previously silanized VACNT-PDMS layer. This was a successful approach creating a nanocomposite capable of sustaining adhesion and proliferation of NSCs. Furthermore, with immunocytochemical staining it was possible to observe neuronal differentiation. The results obtained demonstrated that the conceptualized multilayer multifunctional nanocomposite favors proliferation and differentiation of NSCs, making it an electro-responsive platform and a candidate to be electrically stimulated for neural tissue engineering. A lesão da espinal medula é uma condição extremamente grave que leva a uma diminuição drástica da mobilidade do paciente. A engenharia de tecido neural tenta promover soluções através da combinação de diferentes materiais, células e arquiteturas especifícas para regeneração do tecido lesionado. Este trabalho tem como objectivo a conceptualização e fabrico de um nanocompósito multifuncional e multi-camada bem como estudar a sua citocompatibilidade com células estaminais neurais (NSCs) visando a engenharia de tecido neural. Para tal nanotubos de carbono verticalmente alinhados (VACNTs) foram sintetizados por deposição química de vapor termicamente assistida em substrato de sílica (SiO₂). Em seguida, os VACNTs foram transferidos para polidimetilsiloxano (PDMS) criando uma camada de VACNT-PDMS, com interface estável, mantendo o alinhamento dos CNTs, confirmado por microcopia eletrónica de varrimento. Ao transferir os VACNTs para a camada de PDMS, a manipulação do nanocompósito ganha flexibilidade, eliminando assim alguns problemas apresentados pelos VACNTs quando acoplados ao seu substrato nativo, que é rígido. Ainda assim, o nanocompósito VACNTs/PDMS é inerte e requer uma componente capaz de mimetizar o microambiente neural. Assim, uma terceira camada foi implementada. Para integrar a mesma, o sistema VACNT-PDMS foi submetido a uma série de tratamentos de superfície (ultravioleta acoplado com ozono e plasma de oxigénio) levando à alteração em termos de molhabilidade e energia de superfície avaliada indiretamente por ângulo de contacto (WCA) e por espetroscopia de Transformada de Fourier com reflexão total atenuada (ATR-FTIR), de modo a identificar alterações químicas pós tratamento. O plasma de oxigénio induziu uma modificação da molhabilidade mais significativa com a introdução de grupos silanol (Si-OH) no PDMS e grupos carboxílico (COOH) nos CNTs. Para a terceira camada duas estratégias foram desenvolvidas. A primeira (S1) baseou-se na criação de um hidrogel composto de gelatina e alginato metacrilado (GelMA e AlgMA) suscetível de fotopolimerização e polimerização iónica. Esse hidrogel demonstrou suportar proliferação celular, contudo, quando transferido para o sistema VACNT-PDMS, o hidrogel delaminou. A solução alternativa (S2) consistiu na polimerização de gelatina e alginato através da reticulação induzida por 1-etil-3-(3-dimetilaminopropil)carbodiimida e N-hidroxisuccinimida em cima da camada de VACNT-PDMS previamente silanizada. Esta abordagem foi bem sucedida, criando um nanocompósito capaz de sustentar a adesão e proliferação de NSCs. Além disso, através de ensaios de imunocitoquímica foi possível observar diferenciação neuronal. Os resultados obtidos demonstraram que o nanocompósito multifuncional e em multicamadas conceptualizado neste trabalho favorece a proliferação e diferenciação de NSCs, tornando-o uma plataforma eletro-responsiva candidata a estimulação elétrica para engenharia de tecido neural. Mestrado em Materiais e Dispositivos Biomédicos