25 results on '"von Feilitzen, K."'
Search Results
2. A tissue centric atlas of cell type transcriptome enrichment signatures
- Author
-
Dusart, P, primary, Öling, S, additional, Struck, E, additional, Norreen-Thorsen, M, additional, Zwahlen, M, additional, von Feilitzen, K, additional, Oksvold, P, additional, Bosic, M, additional, Iglesias, MJ, additional, Renne, T, additional, Odeberg, J, additional, Pontén, F, additional, Lindskog, C, additional, Uhlén, M, additional, and Butler, LM, additional
- Published
- 2023
- Full Text
- View/download PDF
3. Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network
- Author
-
Grapotte M., Saraswat M., Bessiere C., Menichelli C., Ramilowski J. A., Severin J., Hayashizaki Y., Itoh M., Tagami M., Murata M., Kojima-Ishiyama M., Noma S., Noguchi S., Kasukawa T., Hasegawa A., Suzuki H., Nishiyori-Sueki H., Frith M. C., Abugessaisa I., Aitken S., Aken B. L., Alam I., Alam T., Alasiri R., Alhendi A. M. N., Alinejad-Rokny H., Alvarez M. J., Andersson R., Arakawa T., Araki M., Arbel T., Archer J., Archibald A. L., Arner E., Arner P., Asai K., Ashoor H., Astrom G., Babina M., Baillie J. K., Bajic V. B., Bajpai A., Baker S., Baldarelli R. M., Balic A., Bansal M., Batagov A. O., Batzoglou S., Beckhouse A. G., Beltrami A. P., Beltrami C. A., Bertin N., Bhattacharya S., Bickel P. J., Blake J. A., Blanchette M., Bodega B., Bonetti A., Bono H., Bornholdt J., Bttcher M., Bougouffa S., Boyd M., Breda J., Brombacher F., Brown J. B., Bult C. J., Burroughs A. M., Burt D. W., Busch A., Caglio G., Califano A., Cameron C. J., Cannistraci C. V., Carbone A., Carlisle A. J., Carninci P., Carter K. W., Cesselli D., Chang J. -C., Chen J. C., Chen Y., Chierici M., Christodoulou J., Ciani Y., Clark E. L., Coskun M., Dalby M., Dalla E., Daub C. O., Davis C. A., de Hoon M. J. L., de Rie D., Denisenko E., Deplancke B., Detmar M., Deviatiiarov R., Di Bernardo D., Diehl A. D., Dieterich L. C., Dimont E., Djebali S., Dohi T., Dostie J., Drablos F., Edge A. S. B., Edinger M., Ehrlund A., Ekwall K., Elofsson A., Endoh M., Enomoto H., Enomoto S., Faghihi M., Fagiolini M., Farach-Carson M. C., Faulkner G. J., Favorov A., Fernandes A. M., Ferrai C., Forrest A. R. R., Forrester L. M., Forsberg M., Fort A., Francescatto M., Freeman T. C., Frith M., Fukuda S., Funayama M., Furlanello C., Furuno M., Furusawa C., Gao H., Gazova I., Gebhard C., Geier F., Geijtenbeek T. B. H., Ghosh S., Ghosheh Y., Gingeras T. R., Gojobori T., Goldberg T., Goldowitz D., Gough J., Greco D., Gruber A. J., Guhl S., Guigo R., Guler R., Gusev O., Gustincich S., Ha T. J., Haberle V., Hale P., Hallstrom B. M., Hamada M., Handoko L., Hara M., Harbers M., Harrow J., Harshbarger J., Hase T., Hashimoto K., Hatano T., Hattori N., Hayashi R., Herlyn M., Hettne K., Heutink P., Hide W., Hitchens K. J., Sui S. H., 't Hoen P. A. C., Hon C. C., Hori F., Horie M., Horimoto K., Horton P., Hou R., Huang E., Huang Y., Hugues R., Hume D., Ienasescu H., Iida K., Ikawa T., Ikemura T., Ikeo K., Inoue N., Ishizu Y., Ito Y., Ivshina A. V., Jankovic B. R., Jenjaroenpun P., Johnson R., Jorgensen M., Jorjani H., Joshi A., Jurman G., Kaczkowski B., Kai C., Kaida K., Kajiyama K., Kaliyaperumal R., Kaminuma E., Kanaya T., Kaneda H., Kapranov P., Kasianov A. S., Katayama T., Kato S., Kawaguchi S., Kawai J., Kawaji H., Kawamoto H., Kawamura Y. I., Kawasaki S., Kawashima T., Kempfle J. S., Kenna T. J., Kere J., Khachigian L., Kiryu H., Kishima M., Kitajima H., Kitamura T., Kitano H., Klaric E., Klepper K., Klinken S. P., Kloppmann E., Knox A. J., Kodama Y., Kogo Y., Kojima M., Kojima S., Komatsu N., Komiyama H., Kono T., Koseki H., Koyasu S., Kratz A., Kukalev A., Kulakovskiy I., Kundaje A., Kunikata H., Kuo R., Kuo T., Kuraku S., Kuznetsov V. A., Kwon T. J., Larouche M., Lassmann T., Law A., Le-Cao K. -A., Lecellier C. -H., Lee W., Lenhard B., Lennartsson A., Li K., Li R., Lilje B., Lipovich L., Lizio M., Lopez G., Magi S., Mak G. K., Makeev V., Manabe R., Mandai M., Mar J., Maruyama K., Maruyama T., Mason E., Mathelier A., Matsuda H., Medvedeva Y. A., Meehan T. F., Mejhert N., Meynert A., Mikami N., Minoda A., Miura H., Miyagi Y., Miyawaki A., Mizuno Y., Morikawa H., Morimoto M., Morioka M., Morishita S., Moro K., Motakis E., Motohashi H., Mukarram A. K., Mummery C. L., Mungall C. J., Murakawa Y., Muramatsu M., Nagasaka K., Nagase T., Nakachi Y., Nakahara F., Nakai K., Nakamura K., Nakamura Y., Nakazawa T., Nason G. P., Nepal C., Nguyen Q. H., Nielsen L. K., Nishida K., Nishiguchi K. M., Nishiyori H., Nitta K., Notredame C., Ogishima S., Ohkura N., Ohno H., Ohshima M., Ohtsu T., Okada Y., Okada-Hatakeyama M., Okazaki Y., Oksvold P., Orlando V., Ow G. S., Ozturk M., Pachkov M., Paparountas T., Parihar S. P., Park S. -J., Pascarella G., Passier R., Persson H., Philippens I. H., Piazza S., Plessy C., Pombo A., Ponten F., Poulain S., Poulsen T. M., Pradhan S., Prezioso C., Pridans C., Qin X. -Y., Quackenbush J., Rackham O., Ramilowski J., Ravasi T., Rehli M., Rennie S., Rito T., Rizzu P., Robert C., Roos M., Rost B., Roudnicky F., Roy R., Rye M. B., Sachenkova O., Saetrom P., Sai H., Saiki S., Saito M., Saito A., Sakaguchi S., Sakai M., Sakaue S., Sakaue-Sawano A., Sandelin A., Sano H., Sasamoto Y., Sato H., Saxena A., Saya H., Schafferhans A., Schmeier S., Schmidl C., Schmocker D., Schneider C., Schueler M., Schultes E. A., Schulze-Tanzil G., Semple C. A., Seno S., Seo W., Sese J., Sheng G., Shi J., Shimoni Y., Shin J. W., SimonSanchez J., Sivertsson A., Sjostedt E., Soderhall C., Laurent G. S., Stoiber M. H., Sugiyama D., Summers K. M., Suzuki A. M., Suzuki K., Suzuki M., Suzuki N., Suzuki T., Swanson D. J., Swoboda R. K., Taguchi A., Takahashi H., Takahashi M., Takamochi K., Takeda S., Takenaka Y., Tam K. T., Tanaka H., Tanaka R., Tanaka Y., Tang D., Taniuchi I., Tanzer A., Tarui H., Taylor M. S., Terada A., Terao Y., Testa A. C., Thomas M., Thongjuea S., Tomii K., Triglia E. T., Toyoda H., Tsang H. G., Tsujikawa M., Uhlen M., Valen E., van de Wetering M., van Nimwegen E., Velmeshev D., Verardo R., Vitezic M., Vitting-Seerup K., von Feilitzen K., Voolstra C. R., Vorontsov I. E., Wahlestedt C., Wasserman W. W., Watanabe K., Watanabe S., Wells C. A., Winteringham L. N., Wolvetang E., Yabukami H., Yagi K., Yamada T., Yamaguchi Y., Yamamoto M., Yamamoto Y., Yamanaka Y., Yano K., Yasuzawa K., Yatsuka Y., Yo M., Yokokura S., Yoneda M., Yoshida E., Yoshida Y., Yoshihara M., Young R., Young R. S., Yu N. Y., Yumoto N., Zabierowski S. E., Zhang P. G., Zucchelli S., Zwahlen M., Chatelain C., Brehelin L., Grapotte, M., Saraswat, M., Bessiere, C., Menichelli, C., Ramilowski, J. A., Severin, J., Hayashizaki, Y., Itoh, M., Tagami, M., Murata, M., Kojima-Ishiyama, M., Noma, S., Noguchi, S., Kasukawa, T., Hasegawa, A., Suzuki, H., Nishiyori-Sueki, H., Frith, M. C., Abugessaisa, I., Aitken, S., Aken, B. L., Alam, I., Alam, T., Alasiri, R., Alhendi, A. M. N., Alinejad-Rokny, H., Alvarez, M. J., Andersson, R., Arakawa, T., Araki, M., Arbel, T., Archer, J., Archibald, A. L., Arner, E., Arner, P., Asai, K., Ashoor, H., Astrom, G., Babina, M., Baillie, J. K., Bajic, V. B., Bajpai, A., Baker, S., Baldarelli, R. M., Balic, A., Bansal, M., Batagov, A. O., Batzoglou, S., Beckhouse, A. G., Beltrami, A. P., Beltrami, C. A., Bertin, N., Bhattacharya, S., Bickel, P. J., Blake, J. A., Blanchette, M., Bodega, B., Bonetti, A., Bono, H., Bornholdt, J., Bttcher, M., Bougouffa, S., Boyd, M., Breda, J., Brombacher, F., Brown, J. B., Bult, C. J., Burroughs, A. M., Burt, D. W., Busch, A., Caglio, G., Califano, A., Cameron, C. J., Cannistraci, C. V., Carbone, A., Carlisle, A. J., Carninci, P., Carter, K. W., Cesselli, D., Chang, J. -C., Chen, J. C., Chen, Y., Chierici, M., Christodoulou, J., Ciani, Y., Clark, E. L., Coskun, M., Dalby, M., Dalla, E., Daub, C. O., Davis, C. A., de Hoon, M. J. L., de Rie, D., Denisenko, E., Deplancke, B., Detmar, M., Deviatiiarov, R., Di Bernardo, D., Diehl, A. D., Dieterich, L. C., Dimont, E., Djebali, S., Dohi, T., Dostie, J., Drablos, F., Edge, A. S. B., Edinger, M., Ehrlund, A., Ekwall, K., Elofsson, A., Endoh, M., Enomoto, H., Enomoto, S., Faghihi, M., Fagiolini, M., Farach-Carson, M. C., Faulkner, G. J., Favorov, A., Fernandes, A. M., Ferrai, C., Forrest, A. R. R., Forrester, L. M., Forsberg, M., Fort, A., Francescatto, M., Freeman, T. C., Frith, M., Fukuda, S., Funayama, M., Furlanello, C., Furuno, M., Furusawa, C., Gao, H., Gazova, I., Gebhard, C., Geier, F., Geijtenbeek, T. B. H., Ghosh, S., Ghosheh, Y., Gingeras, T. R., Gojobori, T., Goldberg, T., Goldowitz, D., Gough, J., Greco, D., Gruber, A. J., Guhl, S., Guigo, R., Guler, R., Gusev, O., Gustincich, S., Ha, T. J., Haberle, V., Hale, P., Hallstrom, B. M., Hamada, M., Handoko, L., Hara, M., Harbers, M., Harrow, J., Harshbarger, J., Hase, T., Hashimoto, K., Hatano, T., Hattori, N., Hayashi, R., Herlyn, M., Hettne, K., Heutink, P., Hide, W., Hitchens, K. J., Sui, S. H., 't Hoen, P. A. C., Hon, C. C., Hori, F., Horie, M., Horimoto, K., Horton, P., Hou, R., Huang, E., Huang, Y., Hugues, R., Hume, D., Ienasescu, H., Iida, K., Ikawa, T., Ikemura, T., Ikeo, K., Inoue, N., Ishizu, Y., Ito, Y., Ivshina, A. V., Jankovic, B. R., Jenjaroenpun, P., Johnson, R., Jorgensen, M., Jorjani, H., Joshi, A., Jurman, G., Kaczkowski, B., Kai, C., Kaida, K., Kajiyama, K., Kaliyaperumal, R., Kaminuma, E., Kanaya, T., Kaneda, H., Kapranov, P., Kasianov, A. S., Katayama, T., Kato, S., Kawaguchi, S., Kawai, J., Kawaji, H., Kawamoto, H., Kawamura, Y. I., Kawasaki, S., Kawashima, T., Kempfle, J. S., Kenna, T. J., Kere, J., Khachigian, L., Kiryu, H., Kishima, M., Kitajima, H., Kitamura, T., Kitano, H., Klaric, E., Klepper, K., Klinken, S. P., Kloppmann, E., Knox, A. J., Kodama, Y., Kogo, Y., Kojima, M., Kojima, S., Komatsu, N., Komiyama, H., Kono, T., Koseki, H., Koyasu, S., Kratz, A., Kukalev, A., Kulakovskiy, I., Kundaje, A., Kunikata, H., Kuo, R., Kuo, T., Kuraku, S., Kuznetsov, V. A., Kwon, T. J., Larouche, M., Lassmann, T., Law, A., Le-Cao, K. -A., Lecellier, C. -H., Lee, W., Lenhard, B., Lennartsson, A., Li, K., Li, R., Lilje, B., Lipovich, L., Lizio, M., Lopez, G., Magi, S., Mak, G. K., Makeev, V., Manabe, R., Mandai, M., Mar, J., Maruyama, K., Maruyama, T., Mason, E., Mathelier, A., Matsuda, H., Medvedeva, Y. A., Meehan, T. F., Mejhert, N., Meynert, A., Mikami, N., Minoda, A., Miura, H., Miyagi, Y., Miyawaki, A., Mizuno, Y., Morikawa, H., Morimoto, M., Morioka, M., Morishita, S., Moro, K., Motakis, E., Motohashi, H., Mukarram, A. K., Mummery, C. L., Mungall, C. J., Murakawa, Y., Muramatsu, M., Nagasaka, K., Nagase, T., Nakachi, Y., Nakahara, F., Nakai, K., Nakamura, K., Nakamura, Y., Nakazawa, T., Nason, G. P., Nepal, C., Nguyen, Q. H., Nielsen, L. K., Nishida, K., Nishiguchi, K. M., Nishiyori, H., Nitta, K., Notredame, C., Ogishima, S., Ohkura, N., Ohno, H., Ohshima, M., Ohtsu, T., Okada, Y., Okada-Hatakeyama, M., Okazaki, Y., Oksvold, P., Orlando, V., Ow, G. S., Ozturk, M., Pachkov, M., Paparountas, T., Parihar, S. P., Park, S. -J., Pascarella, G., Passier, R., Persson, H., Philippens, I. H., Piazza, S., Plessy, C., Pombo, A., Ponten, F., Poulain, S., Poulsen, T. M., Pradhan, S., Prezioso, C., Pridans, C., Qin, X. -Y., Quackenbush, J., Rackham, O., Ramilowski, J., Ravasi, T., Rehli, M., Rennie, S., Rito, T., Rizzu, P., Robert, C., Roos, M., Rost, B., Roudnicky, F., Roy, R., Rye, M. B., Sachenkova, O., Saetrom, P., Sai, H., Saiki, S., Saito, M., Saito, A., Sakaguchi, S., Sakai, M., Sakaue, S., Sakaue-Sawano, A., Sandelin, A., Sano, H., Sasamoto, Y., Sato, H., Saxena, A., Saya, H., Schafferhans, A., Schmeier, S., Schmidl, C., Schmocker, D., Schneider, C., Schueler, M., Schultes, E. A., Schulze-Tanzil, G., Semple, C. A., Seno, S., Seo, W., Sese, J., Sheng, G., Shi, J., Shimoni, Y., Shin, J. W., Simonsanchez, J., Sivertsson, A., Sjostedt, E., Soderhall, C., Laurent, G. S., Stoiber, M. H., Sugiyama, D., Summers, K. M., Suzuki, A. M., Suzuki, K., Suzuki, M., Suzuki, N., Suzuki, T., Swanson, D. J., Swoboda, R. K., Taguchi, A., Takahashi, H., Takahashi, M., Takamochi, K., Takeda, S., Takenaka, Y., Tam, K. T., Tanaka, H., Tanaka, R., Tanaka, Y., Tang, D., Taniuchi, I., Tanzer, A., Tarui, H., Taylor, M. S., Terada, A., Terao, Y., Testa, A. C., Thomas, M., Thongjuea, S., Tomii, K., Triglia, E. T., Toyoda, H., Tsang, H. G., Tsujikawa, M., Uhlen, M., Valen, E., van de Wetering, M., van Nimwegen, E., Velmeshev, D., Verardo, R., Vitezic, M., Vitting-Seerup, K., von Feilitzen, K., Voolstra, C. R., Vorontsov, I. E., Wahlestedt, C., Wasserman, W. W., Watanabe, K., Watanabe, S., Wells, C. A., Winteringham, L. N., Wolvetang, E., Yabukami, H., Yagi, K., Yamada, T., Yamaguchi, Y., Yamamoto, M., Yamamoto, Y., Yamanaka, Y., Yano, K., Yasuzawa, K., Yatsuka, Y., Yo, M., Yokokura, S., Yoneda, M., Yoshida, E., Yoshida, Y., Yoshihara, M., Young, R., Young, R. S., Yu, N. Y., Yumoto, N., Zabierowski, S. E., Zhang, P. G., Zucchelli, S., Zwahlen, M., Chatelain, C., Brehelin, L., Institute of Biotechnology, Biosciences, Institut de Génétique Moléculaire de Montpellier (IGMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Computationnelle (IBC), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Méthodes et Algorithmes pour la Bioinformatique (MAB), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), RIKEN Center for Integrative Medical Sciences [Yokohama] (RIKEN IMS), RIKEN - Institute of Physical and Chemical Research [Japon] (RIKEN), National Institute of Advanced Industrial Science and Technology (AIST), SANOFI Recherche, University of British Columbia (UBC), Experimental Immunology, Infectious diseases, AII - Infectious diseases, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), and Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Montpellier (UM)
- Subjects
0301 basic medicine ,General Physics and Astronomy ,Genome ,Mice ,0302 clinical medicine ,Transcription (biology) ,Promoter Regions, Genetic ,Transcription Initiation, Genetic ,0303 health sciences ,Multidisciplinary ,1184 Genetics, developmental biology, physiology ,High-Throughput Nucleotide Sequencing ,Neurodegenerative Diseases ,222 Other engineering and technologies ,Genomics ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,humanities ,Enhancer Elements, Genetic ,Microsatellite Repeat ,Transcription Initiation Site ,Sequence motif ,Transcription Initiation ,Human ,Enhancer Elements ,Neural Networks ,Science ,610 Medicine & health ,Computational biology ,Biology ,Article ,General Biochemistry, Genetics and Molecular Biology ,Promoter Regions ,03 medical and health sciences ,Computer ,Deep Learning ,Tandem repeat ,Genetic ,Clinical Research ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,Machine learning ,Genetics ,Animals ,Humans ,Polymorphism ,Enhancer ,Transcriptomics ,Gene ,A549 Cell ,030304 developmental biology ,Polymorphism, Genetic ,Neurodegenerative Disease ,Base Sequence ,Animal ,Genome, Human ,Human Genome ,Computational Biology ,Promoter ,General Chemistry ,113 Computer and information sciences ,Cap analysis gene expression ,030104 developmental biology ,[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human genetics ,Cardiovascular and Metabolic Diseases ,A549 Cells ,Minion ,Generic health relevance ,3111 Biomedicine ,Neural Networks, Computer ,610 Medizin und Gesundheit ,030217 neurology & neurosurgery ,FANTOM consortium ,Microsatellite Repeats - Abstract
Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism., Nature Communications, 12 (1), ISSN:2041-1723
- Published
- 2020
- Full Text
- View/download PDF
4. A subcellular map of the human proteome
- Author
-
University of Cambridge, Thul, P.J., Akesson, L., Wiking, M., Mahdessian, D., Geladaki, A., Ait Blal, H., Alm, T., Asplund, A., Björk, L., Breckels, L.M., Bäckström, A., Danielsson, F., Fagerberg, L., Fall, J., Gatto, Laurent, Gnann, C., Hober, S., Hjelmare, M., Johansson, F., Lee, S., Lindskog, C., Mulder, J., Mulvey, C.M., Nilsson, P., Oksvold, P., Rockberg, J., Schutten, R., Schwenk, J.M., Sivertsson, A., Sjöstedt, E., Skogs, M., Stadler, C., Sullivan, D.P., Tegel, H., Winsnes, C., Zhang, C., Zwahlen, M., Mardinoglu, A., Pontén, F., Von Feilitzen, K., Lilley, K.S., Uhlén, M., Lundberg, E., University of Cambridge, Thul, P.J., Akesson, L., Wiking, M., Mahdessian, D., Geladaki, A., Ait Blal, H., Alm, T., Asplund, A., Björk, L., Breckels, L.M., Bäckström, A., Danielsson, F., Fagerberg, L., Fall, J., Gatto, Laurent, Gnann, C., Hober, S., Hjelmare, M., Johansson, F., Lee, S., Lindskog, C., Mulder, J., Mulvey, C.M., Nilsson, P., Oksvold, P., Rockberg, J., Schutten, R., Schwenk, J.M., Sivertsson, A., Sjöstedt, E., Skogs, M., Stadler, C., Sullivan, D.P., Tegel, H., Winsnes, C., Zhang, C., Zwahlen, M., Mardinoglu, A., Pontén, F., Von Feilitzen, K., Lilley, K.S., Uhlén, M., and Lundberg, E.
- Published
- 2017
5. The Human Pathology Atlas for deciphering the prognostic features of human cancers.
- Author
-
Yuan M, Zhang C, Von Feilitzen K, Zwahlen M, Shi M, Li X, Yang H, Song X, Turkez H, Uhlén M, and Mardinoglu A
- Abstract
Background: Cancer is one of the leading causes of mortality worldwide, highlighting the urgent need for a deeper molecular understanding and the development of personalized treatments. The present study aims to establish a solid association between gene expression and patient survival outcomes to enhance the utility of the Human Pathology Atlas for cancer research., Methods: In this updated analysis, we examined the expression profiles of 6918 patients across 21 cancer types. We integrated data from 10 independent cancer cohorts, creating a cross-validated, reliable collection of prognostic genes. We applied systems biology approach to identify the association between gene expression profiles and patient survival outcomes. We further constructed prognostic regulatory networks for kidney renal clear cell carcinoma (KIRC) and liver hepatocellular carcinoma (LIHC), which elucidate the molecular underpinnings associated with patient survival in these cancers., Findings: We observed that gene expression during the transition from normal to tumorous tissue exhibited diverse shifting patterns in their original tissue locations. Significant correlations between gene expression and patient survival outcomes were identified in KIRC and LIHC among the major cancer types. Additionally, the prognostic regulatory network established for these two cancers showed the indicative capabilities of the Human Pathology Atlas and provides actionable insights for cancer research., Interpretation: The updated Human Pathology Atlas provides a significant foundation for precision oncology and the formulation of personalized treatment strategies. These findings deepen our understanding of cancer biology and have the potential to advance targeted therapeutic approaches in clinical practice., Funding: The Knut and Alice Wallenberg Foundation (72110), the China Scholarship Council (Grant No. 202006940003)., Competing Interests: Declaration of interests AM and MU are the founders and shareholders of ScandiBio Therapeutics, ScandiEdge Therapeutics and Atlas Antibodies (MU). The other authors declare no competing interests., (Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
6. Global compositional and functional states of the human gut microbiome in health and disease.
- Author
-
Lee S, Portlock T, Le Chatelier E, Garcia-Guevara F, Clasen F, Oñate FP, Pons N, Begum N, Harzandi A, Proffitt C, Rosario D, Vaga S, Park J, von Feilitzen K, Johansson F, Zhang C, Edwards LA, Lombard V, Gauthier F, Steves CJ, Gomez-Cabrero D, Henrissat B, Lee D, Engstrand L, Shawcross DL, Proctor G, Almeida M, Nielsen J, Mardinoglu A, Moyes DL, Ehrlich SD, Uhlen M, and Shoaie S
- Subjects
- Humans, Machine Learning, Fusobacterium nucleatum genetics, Bacteria classification, Bacteria genetics, Gastrointestinal Microbiome genetics, Metagenome, Metagenomics methods
- Abstract
The human gut microbiota is of increasing interest, with metagenomics a key tool for analyzing bacterial diversity and functionality in health and disease. Despite increasing efforts to expand microbial gene catalogs and an increasing number of metagenome-assembled genomes, there have been few pan-metagenomic association studies and in-depth functional analyses across different geographies and diseases. Here, we explored 6014 human gut metagenome samples across 19 countries and 23 diseases by performing compositional, functional cluster, and integrative analyses. Using interpreted machine learning classification models and statistical methods, we identified Fusobacterium nucleatum and Anaerostipes hadrus with the highest frequencies, enriched and depleted, respectively, across different disease cohorts. Distinct functional distributions were observed in the gut microbiomes of both westernized and nonwesternized populations. These compositional and functional analyses are presented in the open-access Human Gut Microbiome Atlas, allowing for the exploration of the richness, disease, and regional signatures of the gut microbiota across different cohorts., (© 2024 Lee et al.; Published by Cold Spring Harbor Laboratory Press.)
- Published
- 2024
- Full Text
- View/download PDF
7. Systematic transcriptional analysis of human cell lines for gene expression landscape and tumor representation.
- Author
-
Jin H, Zhang C, Zwahlen M, von Feilitzen K, Karlsson M, Shi M, Yuan M, Song X, Li X, Yang H, Turkez H, Fagerberg L, Uhlén M, and Mardinoglu A
- Subjects
- Humans, Cell Line, Drug Development, Gene Expression Profiling, Gene Expression, Neoplasms
- Abstract
Cell lines are valuable resources as model for human biology and translational medicine. It is thus important to explore the concordance between the expression in various cell lines vis-à-vis human native and disease tissues. In this study, we investigate the expression of all human protein-coding genes in more than 1,000 human cell lines representing 27 cancer types by a genome-wide transcriptomics analysis. The cell line gene expression is compared with the corresponding profiles in various tissues, organs, single-cell types and cancers. Here, we present the expression for each cell line and give guidance for the most appropriate cell line for a given experimental study. In addition, we explore the cancer-related pathway and cytokine activity of the cell lines to aid human biology studies and drug development projects. All data are presented in an open access cell line section of the Human Protein Atlas to facilitate the exploration of all human protein-coding genes across these cell lines., (© 2023. Springer Nature Limited.)
- Published
- 2023
- Full Text
- View/download PDF
8. Next generation pan-cancer blood proteome profiling using proximity extension assay.
- Author
-
Álvez MB, Edfors F, von Feilitzen K, Zwahlen M, Mardinoglu A, Edqvist PH, Sjöblom T, Lundin E, Rameika N, Enblad G, Lindman H, Höglund M, Hesselager G, Stålberg K, Enblad M, Simonson OE, Häggman M, Axelsson T, Åberg M, Nordlund J, Zhong W, Karlsson M, Gyllensten U, Ponten F, Fagerberg L, and Uhlén M
- Subjects
- Humans, Proteome metabolism, Precision Medicine, Machine Learning, Neoplasms diagnosis, Neoplasms metabolism, Hematologic Neoplasms
- Abstract
A comprehensive characterization of blood proteome profiles in cancer patients can contribute to a better understanding of the disease etiology, resulting in earlier diagnosis, risk stratification and better monitoring of the different cancer subtypes. Here, we describe the use of next generation protein profiling to explore the proteome signature in blood across patients representing many of the major cancer types. Plasma profiles of 1463 proteins from more than 1400 cancer patients are measured in minute amounts of blood collected at the time of diagnosis and before treatment. An open access Disease Blood Atlas resource allows the exploration of the individual protein profiles in blood collected from the individual cancer patients. We also present studies in which classification models based on machine learning have been used for the identification of a set of proteins associated with each of the analyzed cancers. The implication for cancer precision medicine of next generation plasma profiling is discussed., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
9. A human adipose tissue cell-type transcriptome atlas.
- Author
-
Norreen-Thorsen M, Struck EC, Öling S, Zwahlen M, Von Feilitzen K, Odeberg J, Lindskog C, Pontén F, Uhlén M, Dusart PJ, and Butler LM
- Subjects
- Adipose Tissue metabolism, Gene Expression Profiling, Humans, Intra-Abdominal Fat metabolism, Male, Subcutaneous Fat metabolism, Transcriptome genetics
- Abstract
The importance of defining cell-type-specific genes is well acknowledged. Technological advances facilitate high-resolution sequencing of single cells, but practical challenges remain. Adipose tissue is composed primarily of adipocytes, large buoyant cells requiring extensive, artefact-generating processing for separation and analysis. Thus, adipocyte data are frequently absent from single-cell RNA sequencing (scRNA-seq) datasets, despite being the primary functional cell type. Here, we decipher cell-type-enriched transcriptomes from unfractionated human adipose tissue RNA-seq data. We profile all major constituent cell types, using 527 visceral adipose tissue (VAT) or 646 subcutaneous adipose tissue (SAT) samples, identifying over 2,300 cell-type-enriched transcripts. Sex-subset analysis uncovers a panel of male-only cell-type-enriched genes. By resolving expression profiles of genes differentially expressed between SAT and VAT, we identify mesothelial cells as the primary driver of this variation. This study provides an accessible method to profile cell-type-enriched transcriptomes using bulk RNA-seq, generating a roadmap for adipose tissue biology., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
10. Genome-wide annotation of protein-coding genes in pig.
- Author
-
Karlsson M, Sjöstedt E, Oksvold P, Sivertsson Å, Huang J, Álvez MB, Arif M, Li X, Lin L, Yu J, Ma T, Xu F, Han P, Jiang H, Mardinoglu A, Zhang C, von Feilitzen K, Xu X, Wang J, Yang H, Bolund L, Zhong W, Fagerberg L, Lindskog C, Pontén F, Mulder J, Luo Y, and Uhlen M
- Subjects
- Animals, Gene Expression Profiling, Mammals, Molecular Sequence Annotation, Organ Specificity, Swine genetics, Transcriptome, Genome, Genomics
- Abstract
Background: There is a need for functional genome-wide annotation of the protein-coding genes to get a deeper understanding of mammalian biology. Here, a new annotation strategy is introduced based on dimensionality reduction and density-based clustering of whole-body co-expression patterns. This strategy has been used to explore the gene expression landscape in pig, and we present a whole-body map of all protein-coding genes in all major pig tissues and organs., Results: An open-access pig expression map ( www.rnaatlas.org ) is presented based on the expression of 350 samples across 98 well-defined pig tissues divided into 44 tissue groups. A new UMAP-based classification scheme is introduced, in which all protein-coding genes are stratified into tissue expression clusters based on body-wide expression profiles. The distribution and tissue specificity of all 22,342 protein-coding pig genes are presented., Conclusions: Here, we present a new genome-wide annotation strategy based on dimensionality reduction and density-based clustering. A genome-wide resource of the transcriptome map across all major tissues and organs in pig is presented, and the data is available as an open-access resource ( www.rnaatlas.org ), including a comparison to the expression of human orthologs., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
11. A single-cell type transcriptomics map of human tissues.
- Author
-
Karlsson M, Zhang C, Méar L, Zhong W, Digre A, Katona B, Sjöstedt E, Butler L, Odeberg J, Dusart P, Edfors F, Oksvold P, von Feilitzen K, Zwahlen M, Arif M, Altay O, Li X, Ozcan M, Mardinoglu A, Fagerberg L, Mulder J, Luo Y, Ponten F, Uhlén M, and Lindskog C
- Subjects
- Antibodies metabolism, Gene Expression Profiling, Humans, Proteomics, Proteome metabolism, Transcriptome
- Abstract
Advances in molecular profiling have opened up the possibility to map the expression of genes in cells, tissues, and organs in the human body. Here, we combined single-cell transcriptomics analysis with spatial antibody-based protein profiling to create a high-resolution single-cell type map of human tissues. An open access atlas has been launched to allow researchers to explore the expression of human protein-coding genes in 192 individual cell type clusters. An expression specificity classification was performed to determine the number of genes elevated in each cell type, allowing comparisons with bulk transcriptomics data. The analysis highlights distinct expression clusters corresponding to cell types sharing similar functions, both within the same organs and between organs., (Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).)
- Published
- 2021
- Full Text
- View/download PDF
12. Systematic evaluation of SARS-CoV-2 antigens enables a highly specific and sensitive multiplex serological COVID-19 assay.
- Author
-
Hober S, Hellström C, Olofsson J, Andersson E, Bergström S, Jernbom Falk A, Bayati S, Mravinacova S, Sjöberg R, Yousef J, Skoglund L, Kanje S, Berling A, Svensson AS, Jensen G, Enstedt H, Afshari D, Xu LL, Zwahlen M, von Feilitzen K, Hanke L, Murrell B, McInerney G, Karlsson Hedestam GB, Lendel C, Roth RG, Skoog I, Svenungsson E, Olsson T, Fogdell-Hahn A, Lindroth Y, Lundgren M, Maleki KT, Lagerqvist N, Klingström J, Da Silva Rodrigues R, Muschiol S, Bogdanovic G, Arroyo Mühr LS, Eklund C, Lagheden C, Dillner J, Sivertsson Å, Havervall S, Thålin C, Tegel H, Pin E, Månberg A, Hedhammar M, and Nilsson P
- Abstract
Objective: The COVID-19 pandemic poses an immense need for accurate, sensitive and high-throughput clinical tests, and serological assays are needed for both overarching epidemiological studies and evaluating vaccines. Here, we present the development and validation of a high-throughput multiplex bead-based serological assay., Methods: More than 100 representations of SARS-CoV-2 proteins were included for initial evaluation, including antigens produced in bacterial and mammalian hosts as well as synthetic peptides. The five best-performing antigens, three representing the spike glycoprotein and two representing the nucleocapsid protein, were further evaluated for detection of IgG antibodies in samples from 331 COVID-19 patients and convalescents, and in 2090 negative controls sampled before 2020., Results: Three antigens were finally selected, represented by a soluble trimeric form and the S1-domain of the spike glycoprotein as well as by the C-terminal domain of the nucleocapsid. The sensitivity for these three antigens individually was found to be 99.7%, 99.1% and 99.7%, and the specificity was found to be 98.1%, 98.7% and 95.7%. The best assay performance was although achieved when utilising two antigens in combination, enabling a sensitivity of up to 99.7% combined with a specificity of 100%. Requiring any two of the three antigens resulted in a sensitivity of 99.7% and a specificity of 99.4%., Conclusion: These observations demonstrate that a serological test based on a combination of several SARS-CoV-2 antigens enables a highly specific and sensitive multiplex serological COVID-19 assay., Competing Interests: The authors declare no conflict of interest., (© 2021 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology, Inc.)
- Published
- 2021
- Full Text
- View/download PDF
13. Enhanced Validation of Antibodies Enables the Discovery of Missing Proteins.
- Author
-
Sivertsson Å, Lindström E, Oksvold P, Katona B, Hikmet F, Vuu J, Gustavsson J, Sjöstedt E, von Feilitzen K, Kampf C, Schwenk JM, Uhlén M, and Lindskog C
- Subjects
- Antibodies, Humans, Immunohistochemistry, Proteome, Proteomics
- Abstract
The localization of proteins at a tissue- or cell-type-specific level is tightly linked to the protein function. To better understand each protein's role in cellular systems, spatial information constitutes an important complement to quantitative data. The standard methods for determining the spatial distribution of proteins in single cells of complex tissue samples make use of antibodies. For a stringent analysis of the human proteome, we used orthogonal methods and independent antibodies to validate 5981 antibodies that show the expression of 3775 human proteins across all major human tissues. This enhanced validation uncovered 56 proteins corresponding to the group of "missing proteins" and 171 proteins of unknown function. The presented strategy will facilitate further discussions around criteria for evidence of protein existence based on immunohistochemistry and serves as a useful guide to identify candidate proteins for integrative studies with quantitative proteomics methods.
- Published
- 2020
- Full Text
- View/download PDF
14. High throughput generation of a resource of the human secretome in mammalian cells.
- Author
-
Tegel H, Dannemeyer M, Kanje S, Sivertsson Å, Berling A, Svensson AS, Hober A, Enstedt H, Volk AL, Lundqvist M, Moradi M, Afshari D, Ekblad S, Xu L, Westin M, Bidad F, Schiavone LH, Davies R, Mayr LM, Knight S, Göpel SO, Voldborg BG, Edfors F, Forsström B, von Feilitzen K, Zwahlen M, Rockberg J, Takanen JO, Uhlén M, and Hober S
- Subjects
- Animals, CHO Cells, Cricetulus, DNA biosynthesis, DNA genetics, HEK293 Cells, Humans, Proteomics, Recombinant Proteins analysis, Recombinant Proteins metabolism, High-Throughput Screening Assays
- Abstract
The proteins secreted by human tissues and blood cells, the secretome, are important both for the basic understanding of human biology and for identification of potential targets for future diagnosis and therapy. Here, a high-throughput mammalian cell factory is presented that was established to create a resource of recombinant full-length proteins covering the majority of those annotated as 'secreted' in humans. The full-length DNA sequences of each of the predicted secreted proteins were generated by gene synthesis, the constructs were transfected into Chinese hamster ovary (CHO) cells and the recombinant proteins were produced, purified and analyzed. Almost 1,300 proteins were successfully generated and proteins predicted to be secreted into the blood were produced with a success rate of 65%, while the success rates for the other categories of secreted proteins were somewhat lower giving an overall one-pass success rate of ca. 58%. The proteins were used to generate targeted proteomics assays and several of the proteins were shown to be active in a phenotypic assay involving pancreatic β-cell dedifferentiation. Many of the proteins that failed during production in CHO cells could be rescued in human embryonic kidney (HEK 293) cells suggesting that a cell factory of human origin can be an attractive alternative for production in mammalian cells. In conclusion, a high-throughput protein production and purification system has been successfully established to create a unique resource of the human secretome., (Copyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
15. Integration of molecular profiles in a longitudinal wellness profiling cohort.
- Author
-
Tebani A, Gummesson A, Zhong W, Koistinen IS, Lakshmikanth T, Olsson LM, Boulund F, Neiman M, Stenlund H, Hellström C, Karlsson MJ, Arif M, Dodig-Crnković T, Mardinoglu A, Lee S, Zhang C, Chen Y, Olin A, Mikes J, Danielsson H, von Feilitzen K, Jansson PA, Angerås O, Huss M, Kjellqvist S, Odeberg J, Edfors F, Tremaroli V, Forsström B, Schwenk JM, Nilsson P, Moritz T, Bäckhed F, Engstrand L, Brodin P, Bergström G, Uhlen M, and Fagerberg L
- Subjects
- Aged, Cohort Studies, Female, Healthy Aging genetics, Healthy Volunteers, Humans, Lipidomics, Longitudinal Studies, Male, Metabolomics, Middle Aged, Precision Medicine, Prospective Studies, Proteomics, Sweden, Transcriptome, Healthy Aging metabolism, Metabolome, Proteome metabolism
- Abstract
An important aspect of precision medicine is to probe the stability in molecular profiles among healthy individuals over time. Here, we sample a longitudinal wellness cohort with 100 healthy individuals and analyze blood molecular profiles including proteomics, transcriptomics, lipidomics, metabolomics, autoantibodies and immune cell profiling, complemented with gut microbiota composition and routine clinical chemistry. Overall, our results show high variation between individuals across different molecular readouts, while the intra-individual baseline variation is low. The analyses show that each individual has a unique and stable plasma protein profile throughout the study period and that many individuals also show distinct profiles with regards to the other omics datasets, with strong underlying connections between the blood proteome and the clinical chemistry parameters. In conclusion, the results support an individual-based definition of health and show that comprehensive omics profiling in a longitudinal manner is a path forward for precision medicine.
- Published
- 2020
- Full Text
- View/download PDF
16. An atlas of the protein-coding genes in the human, pig, and mouse brain.
- Author
-
Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C, Oksvold P, Edfors F, Limiszewska A, Hikmet F, Huang J, Du Y, Lin L, Dong Z, Yang L, Liu X, Jiang H, Xu X, Wang J, Yang H, Bolund L, Mardinoglu A, Zhang C, von Feilitzen K, Lindskog C, Pontén F, Luo Y, Hökfelt T, Uhlén M, and Mulder J
- Subjects
- Animals, Datasets as Topic, Female, Humans, Male, Mice, Mice, Inbred C57BL, Organ Specificity genetics, Species Specificity, Swine, Atlases as Topic, Brain physiology, Gene Expression Regulation, Nerve Tissue Proteins genetics, Transcriptome
- Abstract
The brain, with its diverse physiology and intricate cellular organization, is the most complex organ of the mammalian body. To expand our basic understanding of the neurobiology of the brain and its diseases, we performed a comprehensive molecular dissection of 10 major brain regions and multiple subregions using a variety of transcriptomics methods and antibody-based mapping. This analysis was carried out in the human, pig, and mouse brain to allow the identification of regional expression profiles, as well as to study similarities and differences in expression levels between the three species. The resulting data have been made available in an open-access Brain Atlas resource, part of the Human Protein Atlas, to allow exploration and comparison of the expression of individual protein-coding genes in various parts of the mammalian brain., (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2020
- Full Text
- View/download PDF
17. A genome-wide transcriptomic analysis of protein-coding genes in human blood cells.
- Author
-
Uhlen M, Karlsson MJ, Zhong W, Tebani A, Pou C, Mikes J, Lakshmikanth T, Forsström B, Edfors F, Odeberg J, Mardinoglu A, Zhang C, von Feilitzen K, Mulder J, Sjöstedt E, Hober A, Oksvold P, Zwahlen M, Ponten F, Lindskog C, Sivertsson Å, Fagerberg L, and Brodin P
- Subjects
- Gene Expression Profiling, Genome-Wide Association Study, Humans, Proteins genetics, Blood Cells metabolism, Transcriptome
- Abstract
Blood is the predominant source for molecular analyses in humans, both in clinical and research settings. It is the target for many therapeutic strategies, emphasizing the need for comprehensive molecular maps of the cells constituting human blood. In this study, we performed a genome-wide transcriptomic analysis of protein-coding genes in sorted blood immune cell populations to characterize the expression levels of each individual gene across the blood cell types. All data are presented in an interactive, open-access Blood Atlas as part of the Human Protein Atlas and are integrated with expression profiles across all major tissues to provide spatial classification of all protein-coding genes. This allows for a genome-wide exploration of the expression profiles across human immune cell populations and all major human tissues and organs., (Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2019
- Full Text
- View/download PDF
18. The human secretome.
- Author
-
Uhlén M, Karlsson MJ, Hober A, Svensson AS, Scheffel J, Kotol D, Zhong W, Tebani A, Strandberg L, Edfors F, Sjöstedt E, Mulder J, Mardinoglu A, Berling A, Ekblad S, Dannemeyer M, Kanje S, Rockberg J, Lundqvist M, Malm M, Volk AL, Nilsson P, Månberg A, Dodig-Crnkovic T, Pin E, Zwahlen M, Oksvold P, von Feilitzen K, Häussler RS, Hong MG, Lindskog C, Ponten F, Katona B, Vuu J, Lindström E, Nielsen J, Robinson J, Ayoglu B, Mahdessian D, Sullivan D, Thul P, Danielsson F, Stadler C, Lundberg E, Bergström G, Gummesson A, Voldborg BG, Tegel H, Hober S, Forsström B, Schwenk JM, Fagerberg L, and Sivertsson Å
- Subjects
- Humans, Databases, Protein, Proteome metabolism, Proteomics
- Abstract
The proteins secreted by human cells (collectively referred to as the secretome) are important not only for the basic understanding of human biology but also for the identification of potential targets for future diagnostics and therapies. Here, we present a comprehensive analysis of proteins predicted to be secreted in human cells, which provides information about their final localization in the human body, including the proteins actively secreted to peripheral blood. The analysis suggests that a large number of the proteins of the secretome are not secreted out of the cell, but instead are retained intracellularly, whereas another large group of proteins were identified that are predicted to be retained locally at the tissue of expression and not secreted into the blood. Proteins detected in the human blood by mass spectrometry-based proteomics and antibody-based immunoassays are also presented with estimates of their concentrations in the blood. The results are presented in an updated version 19 of the Human Protein Atlas in which each gene encoding a secretome protein is annotated to provide an open-access knowledge resource of the human secretome, including body-wide expression data, spatial localization data down to the single-cell and subcellular levels, and data about the presence of proteins that are detectable in the blood., (Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2019
- Full Text
- View/download PDF
19. Enhanced validation of antibodies for research applications.
- Author
-
Edfors F, Hober A, Linderbäck K, Maddalo G, Azimi A, Sivertsson Å, Tegel H, Hober S, Szigyarto CA, Fagerberg L, von Feilitzen K, Oksvold P, Lindskog C, Forsström B, and Uhlen M
- Subjects
- Animals, Blotting, Western methods, Blotting, Western standards, High-Throughput Screening Assays standards, Humans, Reference Standards, Reproducibility of Results, Antibodies immunology, Antibody Specificity immunology, High-Throughput Screening Assays methods, Validation Studies as Topic
- Abstract
There is a need for standardized validation methods for antibody specificity and selectivity. Recently, five alternative validation pillars were proposed to explore the specificity of research antibodies using methods with no need for prior knowledge about the protein target. Here, we show that these principles can be used in a streamlined manner for enhanced validation of research antibodies in Western blot applications. More than 6,000 antibodies were validated with at least one of these strategies involving orthogonal methods, genetic knockdown, recombinant expression, independent antibodies, and capture mass spectrometry analysis. The results show a path forward for efforts to validate antibodies in an application-specific manner suitable for both providers and users.
- Published
- 2018
- Full Text
- View/download PDF
20. A pathology atlas of the human cancer transcriptome.
- Author
-
Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, Sanli K, von Feilitzen K, Oksvold P, Lundberg E, Hober S, Nilsson P, Mattsson J, Schwenk JM, Brunnström H, Glimelius B, Sjöblom T, Edqvist PH, Djureinovic D, Micke P, Lindskog C, Mardinoglu A, and Ponten F
- Subjects
- Gene Regulatory Networks, Humans, Neoplasms classification, Neoplasms mortality, Prognosis, Atlases as Topic, Genes, Neoplasm, Neoplasms genetics, Neoplasms pathology, Transcriptome
- Abstract
Cancer is one of the leading causes of death, and there is great interest in understanding the underlying molecular mechanisms involved in the pathogenesis and progression of individual tumors. We used systems-level approaches to analyze the genome-wide transcriptome of the protein-coding genes of 17 major cancer types with respect to clinical outcome. A general pattern emerged: Shorter patient survival was associated with up-regulation of genes involved in cell growth and with down-regulation of genes involved in cellular differentiation. Using genome-scale metabolic models, we show that cancer patients have widespread metabolic heterogeneity, highlighting the need for precise and personalized medicine for cancer treatment. All data are presented in an interactive open-access database (www.proteinatlas.org/pathology) to allow genome-wide exploration of the impact of individual proteins on clinical outcomes., (Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2017
- Full Text
- View/download PDF
21. A subcellular map of the human proteome.
- Author
-
Thul PJ, Åkesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H, Alm T, Asplund A, Björk L, Breckels LM, Bäckström A, Danielsson F, Fagerberg L, Fall J, Gatto L, Gnann C, Hober S, Hjelmare M, Johansson F, Lee S, Lindskog C, Mulder J, Mulvey CM, Nilsson P, Oksvold P, Rockberg J, Schutten R, Schwenk JM, Sivertsson Å, Sjöstedt E, Skogs M, Stadler C, Sullivan DP, Tegel H, Winsnes C, Zhang C, Zwahlen M, Mardinoglu A, Pontén F, von Feilitzen K, Lilley KS, Uhlén M, and Lundberg E
- Subjects
- Cell Line, Datasets as Topic, Female, Humans, Male, Mass Spectrometry, Microscopy, Fluorescence, Protein Interaction Mapping, Proteome genetics, Reproducibility of Results, Subcellular Fractions, Transcriptome, Molecular Imaging, Organelles chemistry, Organelles metabolism, Protein Interaction Maps, Proteome analysis, Proteome metabolism, Single-Cell Analysis
- Abstract
Resolving the spatial distribution of the human proteome at a subcellular level can greatly increase our understanding of human biology and disease. Here we present a comprehensive image-based map of subcellular protein distribution, the Cell Atlas, built by integrating transcriptomics and antibody-based immunofluorescence microscopy with validation by mass spectrometry. Mapping the in situ localization of 12,003 human proteins at a single-cell level to 30 subcellular structures enabled the definition of the proteomes of 13 major organelles. Exploration of the proteomes revealed single-cell variations in abundance or spatial distribution and localization of about half of the proteins to multiple compartments. This subcellular map can be used to refine existing protein-protein interaction networks and provides an important resource to deconvolute the highly complex architecture of the human cell., (Copyright © 2017, American Association for the Advancement of Science.)
- Published
- 2017
- Full Text
- View/download PDF
22. Proteomics. Tissue-based map of the human proteome.
- Author
-
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, and Pontén F
- Subjects
- Alternative Splicing, Cell Line, Female, Genes, Genetic Code, Humans, Internet, Male, Membrane Proteins genetics, Membrane Proteins metabolism, Mitochondrial Proteins genetics, Mitochondrial Proteins metabolism, Neoplasms genetics, Neoplasms metabolism, Protein Array Analysis, Protein Isoforms genetics, Protein Isoforms metabolism, Proteome genetics, Tissue Distribution, Transcription, Genetic, Databases, Protein, Proteome metabolism
- Abstract
Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body., (Copyright © 2015, American Association for the Advancement of Science.)
- Published
- 2015
- Full Text
- View/download PDF
23. A chromosome-centric analysis of antibodies directed toward the human proteome using Antibodypedia.
- Author
-
Alm T, von Feilitzen K, Lundberg E, Sivertsson Å, and Uhlén M
- Subjects
- Antibodies chemistry, Chromosome Mapping, Databases, Protein, Human Genome Project, Humans, Proteomics, Antibodies analysis, Chromosomes, Human, Genome, Human, Proteome analysis, Software
- Abstract
Antibodies are crucial for the study of human proteins and have been defined as one of the three pillars in the human chromosome-centric Human Proteome Project (C-HPP). In this article the chromosome-centric structure has been used to analyze the availability of antibodies as judged by the presence within the portal Antibodypedia, a database designed to allow comparisons and scoring of publicly available antibodies toward human protein targets. This public database displays antibody data from more than one million antibodies toward human protein targets. A summary of the content in this knowledge resource reveals that there exist more than 10 antibodies to over 70% of all the putative human genes, evenly distributed over the 24 human chromosomes. The analysis also shows that at present, less than 10% of the putative human protein-coding genes (n = 1882) predicted from the genome sequence lack antibodies, suggesting that focused efforts from the antibody-based and mass spectrometry-based proteomic communities should be encouraged to pursue the analysis of these missing proteins. We show that Antibodypedia may be used to track the development of available and validated antibodies to the individual chromosomes, and thus the database is an attractive tool to identify proteins with no or few antibodies yet generated.
- Published
- 2014
- Full Text
- View/download PDF
24. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics.
- Author
-
Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, Asplund A, Sjöstedt E, Lundberg E, Szigyarto CA, Skogs M, Takanen JO, Berling H, Tegel H, Mulder J, Nilsson P, Schwenk JM, Lindskog C, Danielsson F, Mardinoglu A, Sivertsson A, von Feilitzen K, Forsberg M, Zwahlen M, Olsson I, Navani S, Huss M, Nielsen J, Ponten F, and Uhlén M
- Subjects
- Female, Gene Expression Profiling, Gene Regulatory Networks, Humans, Male, Proteins genetics, Proteins metabolism, Proteome genetics, Proteome metabolism, Systems Integration, Tissue Array Analysis, Antibodies pharmacology, Gene Expression, Genomics methods, Organ Specificity genetics, Proteomics methods, Transcriptome
- Abstract
Global classification of the human proteins with regards to spatial expression patterns across organs and tissues is important for studies of human biology and disease. Here, we used a quantitative transcriptomics analysis (RNA-Seq) to classify the tissue-specific expression of genes across a representative set of all major human organs and tissues and combined this analysis with antibody-based profiling of the same tissues. To present the data, we launch a new version of the Human Protein Atlas that integrates RNA and protein expression data corresponding to ∼80% of the human protein-coding genes with access to the primary data for both the RNA and the protein analysis on an individual gene level. We present a classification of all human protein-coding genes with regards to tissue-specificity and spatial expression pattern. The integrative human expression map can be used as a starting point to explore the molecular constituents of the human body.
- Published
- 2014
- Full Text
- View/download PDF
25. Contribution of antibody-based protein profiling to the human Chromosome-centric Proteome Project (C-HPP).
- Author
-
Fagerberg L, Oksvold P, Skogs M, Algenäs C, Lundberg E, Pontén F, Sivertsson A, Odeberg J, Klevebring D, Kampf C, Asplund A, Sjöstedt E, Al-Khalili Szigyarto C, Edqvist PH, Olsson I, Rydberg U, Hudson P, Ottosson Takanen J, Berling H, Björling L, Tegel H, Rockberg J, Nilsson P, Navani S, Jirström K, Mulder J, Schwenk JM, Zwahlen M, Hober S, Forsberg M, von Feilitzen K, and Uhlén M
- Subjects
- Cell Line, Cell Line, Tumor, Gene Expression, Gene Expression Profiling, Genome, Human, Humans, Microscopy, Fluorescence, Neoplasm Proteins genetics, Neoplasm Proteins metabolism, Neoplasms genetics, Neoplasms metabolism, Oligonucleotide Array Sequence Analysis, Proteome genetics, Proteome metabolism, RNA, Messenger genetics, RNA, Messenger metabolism, Antibodies chemistry, Chromosomes, Human chemistry, Human Genome Project, Neoplasm Proteins isolation & purification, Neoplasms chemistry, Proteome isolation & purification
- Abstract
A gene-centric Human Proteome Project has been proposed to characterize the human protein-coding genes in a chromosome-centered manner to understand human biology and disease. Here, we report on the protein evidence for all genes predicted from the genome sequence based on manual annotation from literature (UniProt), antibody-based profiling in cells, tissues and organs and analysis of the transcript profiles using next generation sequencing in human cell lines of different origins. We estimate that there is good evidence for protein existence for 69% (n = 13985) of the human protein-coding genes, while 23% have only evidence on the RNA level and 7% still lack experimental evidence. Analysis of the expression patterns shows few tissue-specific proteins and approximately half of the genes expressed in all the analyzed cells. The status for each gene with regards to protein evidence is visualized in a chromosome-centric manner as part of a new version of the Human Protein Atlas ( www.proteinatlas.org ).
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.