Back to Search Start Over

Sensitisation of Eu(III)- and Tb(III)-based luminescence by Ir(III) units in Ir/lanthanide dyads: evidence for parallel energy-transfer and electron-transfer based mechanisms.

Authors :
Sykes, Daniel
Cankut, Ahmet J.
Mohd Ali, Noorshida
Stephenson, Andrew
Spall, Steven J. P.
Parker, Simon C.
Weinstein, Julia A.
Ward, Michael D.
Source :
Dalton Transactions: An International Journal of Inorganic Chemistry. 2014, Vol. 43 Issue 17, p6414-6428. 15p.
Publication Year :
2014

Abstract

A series of blue-luminescent Ir(III) complexes with a pendant binding site for lanthanide(III) ions has been synthesized and used to prepare Ir(III)/Ln(III) dyads (Ln = Eu, Tb, Gd). Photophysical studies were used to establish mechanisms of Ir→Ln (Ln = Tb, Eu) energy-transfer. In the Ir/Gd dyads, where direct Ir→Gd energy-transfer is not possible, significant quenching of Ir-based luminescence nonetheless occurred; this can be ascribed to photoinduced electron-transfer from the photo-excited Ir unit (*Ir, 3MLCT/3LC excited state) to the pendant pyrazolyl-pyridine site which becomes a good electron-acceptor when coordinated to an electropositive Gd(III) centre. This electron transfer quenches the Ir-based luminescence, leading to formation of a charge-separated {Ir4+}•—(pyrazolyl-pyridine)•− state, which is short-lived possibly due to fast back electron-transfer (<20 ns). In the Ir/Tb and Ir/Eu dyads this electron-transfer pathway is again operative and leads to sensitisation of Eu-based and Tb-based emission using the energy liberated from the back electron-transfer process. In addition direct Dexter-type Ir→Ln (Ln = Tb, Eu) energytransfer occurs on a similar timescale, meaning that there are two parallel mechanisms by which excitation energy can be transferred from *Ir to the Eu/Tb centre. Time-resolved luminescence measurements on the sensitised Eu-based emission showed both fast and slow rise-time components, associated with the PET-based and Dexter-based energy-transfer mechanisms respectively. In the Ir/Tb dyads, the Ir→Tb energy-transfer is only just thermodynamically favourable, leading to rapid Tb→Ir thermally-activated back energy-transfer and non-radiative deactivation to an extent that depends on the precise energy gap between the *Ir and Tb-based 5D4 states. Thus, the sensitised Tb(III)-based emission is weak and unusually short-lived due to back energy transfer, but nonetheless represents rare examples of Tb(III) sensitisation by a energy donor that could be excited using visible light as opposed to the usually required UV excitation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14779226
Volume :
43
Issue :
17
Database :
Academic Search Index
Journal :
Dalton Transactions: An International Journal of Inorganic Chemistry
Publication Type :
Academic Journal
Accession number :
100078785
Full Text :
https://doi.org/10.1039/c4dt00292j