Back to Search Start Over

Modeling of fiber-reinforced PMMA at different scales.

Authors :
Díaz, Guillermo
Mosler, Jörn
Source :
PAMM: Proceedings in Applied Mathematics & Mechanics. Dec2014, Vol. 14 Issue 1, p159-160. 2p.
Publication Year :
2014

Abstract

This paper deals with the modeling of fiber-reinforced PMMA. Focus is on the macroscopic mechanical response with emphasis on the fracture properties such as the ultimate strength and the fracture energy. In order to capture the macroscopic mechanical response of PMMA, a finite element formulation is presented. While the elastic response of the fibres and that of the surrounding matrix are modelled in standard manner, i.e., by standard bulk material models, the relevant failure modes such as cracking of the fibres are accounted for by means of the so-called Strong Discontinuity Approach (SDA). Since the fibres are relatively small, their fracture mechanical properties crucially depend on their geometry, i.e., they show a pronounced size effect. Based on numerical analyses of fibres with different geometries, the aforementioned size effect is naturally incorporated into the formulation [1]. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim) [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16177061
Volume :
14
Issue :
1
Database :
Academic Search Index
Journal :
PAMM: Proceedings in Applied Mathematics & Mechanics
Publication Type :
Academic Journal
Accession number :
100084205
Full Text :
https://doi.org/10.1002/pamm.201410067