Back to Search Start Over

Fibrillation Number Based on Wavelength and Critical Mass in Patients Who Underwent Radiofrequency Catheter Ablation for Atrial Fibrillation.

Authors :
Hwang, Minki
Park, Junbeum
Lee, Young-Seon
Park, Jae Hyung
Choi, Sung Hwan
Shim, Eun Bo
Pak, Hui-Nam
Source :
IEEE Transactions on Biomedical Engineering. Feb2015, Vol. 62 Issue 2, p673-679. 7p.
Publication Year :
2015

Abstract

The heart characteristic length, the inverse of conduction velocity (CV), and the inverse of the refractory period are known to determine vulnerability to cardiac fibrillation (fibrillation number, FibN) in in silico or ex vivo models. The purpose of this study was to validate the accuracy of FibN through in silico atrial modeling and to evaluate its clinical application in patients with atrial fibrillation (AF) who had undergone radiofrequency catheter ablation. We compared the maintenance duration of AF at various FibNAF values using in silico bidomain atrial modeling. Among 60 patients (72% male, $54\pm 13$ years old, 82% with paroxysmal AF) who underwent circumferential pulmonary vein isolation (CPVI) for AF rhythm control, we examined the relationship between FibN AF and postprocedural AF inducibility or induction pacing cycle length (iPCL). Clinical FibNAF was calculated using left atrium (LA) dimension (echocardiogram), the inverse of CV, and the inverse of the atrial effective refractory periods measured at proximal and distal coronary sinus. In silico simulation found a positive correlation between AF maintenance duration and FibNAF ($R = 0.90$, $p < 0.001$). After clinical CPVI, FibNAF ($0.296\pm 0.038$ versus $0.192\pm 0.028$, $p < 0.001$ ) was significantly higher in patients with postprocedural AF inducibility ( $n = 41$) than in those without ($n = 19$ ). Among 41 patients with postprocedural AF inducibility, FibNAF ( $P = 0.935$, $p <0.001$) had excellent correlations with induction pacing cycle length. FibNAF, based on LA mass and wavelength, correlates well with AF maintenance in computational modeling and clinical AF inducibility after CPVI. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
00189294
Volume :
62
Issue :
2
Database :
Academic Search Index
Journal :
IEEE Transactions on Biomedical Engineering
Publication Type :
Academic Journal
Accession number :
100565253
Full Text :
https://doi.org/10.1109/TBME.2014.2363669