Back to Search Start Over

A Low-Cost Implementation of a 360° Vision Distributed Aperture System.

Authors :
Peng, Xiaoming
Bennamoun, Mohammed
Wang, Qingbo
Ma, Qian
Xu, Zhiyong
Source :
IEEE Transactions on Circuits & Systems for Video Technology. Feb2015, Vol. 25 Issue 2, p225-238. 14p.
Publication Year :
2015

Abstract

Visible light cameras commonly used for surveillance applications usually have a limited field of view (FoV). To acquire a broader FoV, distributed aperture systems (DASs) combine views from multiple cameras. Although some commercial or proprietary systems already exist, the open literature in this field reports solely the performance and/or hardware architecture of the respective systems, and omits the required details for a reimplementation. In this paper we present a low-cost, personal-computer-based 360° DAS, with a full description of the hardware architecture and the software implementation details. In particular, we describe in detail two problems, the offline estimation of the orientations of the cameras of the proposed DAS and the online synthesis of a virtual view in real time. For the first problem, we propose an area-based bundle adjuster by combining the forward additive Lucas–Kanade algorithm with a bundle adjustment strategy. The color virtual view of up to $2048\times 1024$ pixels is synthesized online at 39 frames/s. A large majority of the workload of the online phase is implemented on the graphic processing unit. The techniques and methods proposed in this paper are generic and independent on the arrangement of cameras. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
10518215
Volume :
25
Issue :
2
Database :
Academic Search Index
Journal :
IEEE Transactions on Circuits & Systems for Video Technology
Publication Type :
Academic Journal
Accession number :
100872085
Full Text :
https://doi.org/10.1109/TCSVT.2014.2335832