Back to Search Start Over

MicroRNA-185 Targets SOCS3 to Inhibit Beta-Cell Dysfunction in Diabetes.

Authors :
Bao, Lidao
Fu, Xudong
Si, Mingwen
Wang, Yi
Ma, Ruilian
Ren, Xianhua
Lv, Haijun
Source :
PLoS ONE. Feb2015, Vol. 10 Issue 2, p1-14. 14p.
Publication Year :
2015

Abstract

Diabetes is the most common and complex metabolic disorder, and one of the most important health threats now. MicroRNAs (miRNAs) are a group of small non-coding RNAs that have been suggested to play a vital role in a variety of physiological processes, including glucose homeostasis. In this study, we investigated the role of miR-185 in diabetes. MiR-185 was significantly downregulated in diabetic patients and mice, and the low level was correlated to blood glucose concentration. Overexpression of miR-185 enhanced insulin secretion of pancreatic β-cells, promoted cell proliferation and protected cells from apoptosis. Further experiments using in silico prediction, luciferase reporter assay and western blot assay demonstrated that miR-185 directly targeted SOCS3 by binding to its 3’-UTR. On the contrary to miR-185’s protective effects, SOCS3 significantly suppressed functions of β-cell and inactivated Stat3 pathway. When treating cells with miR-185 mimics in combination with SOCS3 overexpression plasmid, the inhibitory effects of SOCS3 were reversed. While combined treatment of miR-185 mimics and SOCS3 siRNA induced synergistically promotive effects compared to either miR-185 mimics or SOCS3 siRNA treatment alone. Moreover, we observed that miR-185 level was inversely correlated with SOCS3 expression in diabetes patients. In conclusion, this study revealed a functional and mechanistic link between miR-185 and SOCS3 in the pathogenesis of diabetes. MiR-185 plays an important role in the regulation of insulin secretion and β-cell growth in diabetes. Restoration of miR-185 expression may serve a potentially promising and efficient therapeutic approach for diabetes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
10
Issue :
2
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
101318805
Full Text :
https://doi.org/10.1371/journal.pone.0116067