Back to Search Start Over

Multi-scale validation strategy for satellite albedo products and its uncertainty analysis.

Authors :
Peng, JingJing
Liu, Qiang
Wen, JianGuang
Liu, QinHuo
Tang, Yong
Wang, LiZhao
Dou, BaoCheng
You, DongQin
Sun, ChangKui
Zhao, XiaoJie
Feng, YouBin
Shi, Jian
Source :
SCIENCE CHINA Earth Sciences. Apr2015, Vol. 58 Issue 4, p573-588. 16p.
Publication Year :
2015

Abstract

Coarse-resolution satellite albedo products are important for climate change and energy balance research because of their capability to characterize the spatiotemporal patterns of land surface parameters at both the regional and global scales. The accuracy of coarse-resolution products is usually assessed via comparison with in situ measurements. The key issue in the comparison of remote sensing observations with in situ measurements is scaling and uncertainty. This paper presents a strategy for validating 1-km-resolution remote sensing albedo products using field measurements and high-resolution remote sensing observations. Field measurements were collected to calibrate the high-resolution (30 m) albedo products derived from HJ-1a/b images. Then, the calibrated high-resolution albedo maps were resampled (i.e., upscaled) to assess the accuracy of the coarse-resolution albedo products. The samples of field measurements and high-resolution pixels are based on an uncertainty analysis. Two types of coarse-resolution albedo datasets, from global land surface satellite (GLASS) and moderate-resolution imaging spectroradiometer (MODIS), are validated over the middle reaches of the Heihe River in China. The results indicate that the upscaled HJ (Huan Jing means environment in Chinese and this refers to a satellite constellation designed for environment and disaster monitoring by China) albedo, which was calibrated using field measurements, can provide accurate reference values for validating coarse-resolution satellite albedo products. However, the uncertainties in the upscaled HJ albedo should be estimated, and pixels with large uncertainties should be excluded from the validation process. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16747313
Volume :
58
Issue :
4
Database :
Academic Search Index
Journal :
SCIENCE CHINA Earth Sciences
Publication Type :
Academic Journal
Accession number :
101760673
Full Text :
https://doi.org/10.1007/s11430-014-4997-y