Back to Search Start Over

Tropical forest wood production: a cross-continental comparison.

Authors :
Banin, Lindsay
Lewis, Simon L.
Lopez‐Gonzalez, Gabriela
Baker, Timothy R.
Quesada, Carlos A.
Chao, Kuo‐Jung
Burslem, David F. R. P.
Nilus, Reuben
Abu Salim, Kamariah
Keeling, Helen C.
Tan, Sylvester
Davies, Stuart J.
Monteagudo Mendoza, Abel
Vásquez, Rodolfo
Lloyd, Jon
Neill, David A.
Pitman, Nigel
Phillips, Oliver L.
Wurzburger, Nina
Source :
Journal of Ecology. Jul2014, Vol. 102 Issue 4, p1025-1037. 13p. 4 Charts, 3 Graphs, 1 Map.
Publication Year :
2014

Abstract

1. Tropical forest above-ground wood production (AGWP) varies substantially along environmental gradients. Some evidence suggests that AGWP may vary between regions and specifically that Asian forests have particularly high AGWP. However, comparisons across biogeographic regions using standardized methods are lacking, limiting our assessment of pan-tropical variation in AGWP and potential causes. 2. We sampled AGWP in NW Amazon (17 long-term forest plots) and N Borneo (11 plots), both with abundant year-round precipitation. Within each region, forests growing on a broad range of edaphic conditions were sampled using standardized soil and forest measurement techniques. 3. Plot-level AGWP was 49% greater in Borneo than in Amazonia (9.73 ± 0.56 vs. 6.53 ± 0.34 Mg dry mass ha-1 a-1, respectively; regional mean ± 1 SE). AGWP was positively associated with soil fertility (PCA axes, sum of bases and total P). After controlling for the edaphic environment,AGWP remained significantly higher in Bornean plots. Differences in AGWP were largely attributable to differing height-diameter allometry in the two regions and the abundance of large trees in Borneo. This may be explained, in part, by the greater solar radiation in Borneo compared with NWAmazonia. 4. Trees belonging to the dominant SE Asian family, Dipterocarpaceae, gained woody biomass faster than otherwise equivalent, neighbouring non-dipterocarps, implying that the exceptional production of Bornean forests may be driven by floristic elements. This dominant SE Asian family may partition biomass differently or be more efficient at harvesting resources and in converting themto woody biomass. 5. Synthesis. N Bornean forests have much greater AGWP rates than those in NW Amazon when soil conditions and rainfall are controlled for. Greater resource availability and the highly productive dipterocarps may, in combination, explain why Asian forests produce wood half as fast again as comparable forests in the Amazon. Our results also suggest that taxonomic groups differ in their fundamental ability to capture carbon and that different tropical regions may therefore have different carbon uptake capacities due to biogeographic history. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00220477
Volume :
102
Issue :
4
Database :
Academic Search Index
Journal :
Journal of Ecology
Publication Type :
Academic Journal
Accession number :
102206663
Full Text :
https://doi.org/10.1111/1365-2745.12263