Back to Search Start Over

Excited State Dynamics and Isomerization in Ruthenium Sulfoxide Complexes.

Authors :
King, Albert W.
Lei Wang
Rack, Jeffrey J.
Source :
Accounts of Chemical Research. Apr2015, Vol. 48 Issue 4, p1115-1122. 8p.
Publication Year :
2015

Abstract

Conspectus: Molecular photochromic compounds are those that interconvert between two isomeric forms with light. The two isomeric forms display distinct electronic and molecular structures and must not be in equilibrium with one another. These light-activated molecular switch compounds have found wide application in areas of study ranging from chemical biology to materials science, where conversion from one isomeric form to another by light prompts a response in the environment (e.g., protein or polymeric material). Certain ruthenium and osmium polypyridine sulfoxide complexes are photochromic. The mode of action is a phototriggered isomerization of the sulfoxide from S- to O-bonded. The change in ligation drastically alters both the spectroscopic and electrochemical properties of the metal complex. Our laboratory has pioneered the preparation and study of these complexes. In particular, we have applied femtosecond pump-probe spectroscopy to reveal excited state details of the isomerization mechanism. The data from numerous complexes allowed us to predict that the isomerization was nonadiabatic in nature, defined as occurring from a S-bonded triplet excited state (primarily metal-to-ligand charge transfer in character) to an O-bonded singlet ground state potential energy surface. This prediction was corroborated by high-level density functional theory calculations. An intriguing aspect of this reactivity is the coupling of nuclear motion to the electronic wave function and how this coupling affects motions productive for isomerization. In an effort to learn more about this coupling, we designed a project to examine phototriggered isomerization in bis-sulfoxide complexes. The goal of these studies was to determine whether certain complexes could be designed in which a single photon excitation event would prompt two sulfoxide isomerizations. We employed chelating sulfoxides in this study and found that both the nature of the chelate ring and the R group on the sulfoxide affect the photochemical reactivity. For example, this reactivity may be tuned such that two sulfoxide ligands isomerize sequentially following two successive excitations or that two sulfoxide ligands isomerize following a single excitation. This Account explains our understanding to date of this photochemistry. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00014842
Volume :
48
Issue :
4
Database :
Academic Search Index
Journal :
Accounts of Chemical Research
Publication Type :
Academic Journal
Accession number :
102244051
Full Text :
https://doi.org/10.1021/ar500396a