Back to Search Start Over

Spatial distribution and environmental determinants of denitrification enzyme activity in reed-dominated raised fields.

Authors :
Lan, Yan
Cui, Baoshan
Han, Zhen
Li, Xia
Li, Fengju
Zhang, Yongtao
Source :
Chinese Geographical Science. Aug2015, Vol. 25 Issue 4, p438-450. 13p.
Publication Year :
2015

Abstract

Denitrification is an important process of nitrogen removal in lake ecosystems. However, the importance of denitrification across the entire soil-depth gradients including subsurface layers remains poorly understood. This study aims to determine the spatial pattern of soil denitrification enzyme activity (DEA) and its environmental determinants across the entire soil depth gradients in the raised fields in Baiyang Lake, North China. In two different zones of the raised fields (i.e., water boundary vs. main body of the raised fields), the soil samples from −1.0 m to 1.1 m depth were collected, and the DEA and following environmental determinants were quantified: soil moisture, pH, total nitrogen (TN), ammonia nitrogen (NH-N), nitrate nitrogen (NO-N), total organic carbon (TOC), and rhizome biomass of Phragmites australis. The results showed that the soil DEA and environmental factors had a striking zonal distribution across the entire soil depth gradients. The soil DEA reached two peak values in the upper and middle soil layers, indicating that denitrification are important in both topsoil and subsurface of the raised fields. The correlation analysis showed that the DEA is negatively correlated with the soil depth ( p < 0.05). However, this phenomenon did not occur in the distance to the water edge, except in the upper layers (from 0.2 m to 0.7 m) of the boundary zone of the raised fields. In the main body of the raised fields, the DEA level remained high; however, it showed no significant relationship with the distance to the water edge. The linear regression analysis showed significant positive correlation of the DEA with the soil TN, NO-N, NH-N, and TOC; whereas it showed negative correlation with soil pH. No significant correlations with soil moisture and temperature were observed. A positive correlation was also found between the DEA and rhizome biomass of P. australis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10020063
Volume :
25
Issue :
4
Database :
Academic Search Index
Journal :
Chinese Geographical Science
Publication Type :
Academic Journal
Accession number :
103685944
Full Text :
https://doi.org/10.1007/s11769-014-0721-2