Back to Search Start Over

Magnetic resonance imaging-based radiation-absorbed dose estimation of 166Ho microspheres in liver radioembolization.

Authors :
Seevinck PR
van de Maat GH
de Wit TC
Vente MA
Nijsen JF
Bakker CJ
Seevinck, Peter R
van de Maat, Gerrit H
de Wit, Tim C
Vente, Maarten A D
Nijsen, Johannes F W
Bakker, Chris J G
Source :
International Journal of Radiation Oncology, Biology, Physics. Jul2012, Vol. 83 Issue 3, pe437-44. 1p.
Publication Year :
2012

Abstract

<bold>Purpose: </bold>To investigate the potential of magnetic resonance imaging (MRI) for accurate assessment of the three-dimensional (166)Ho activity distribution to estimate radiation-absorbed dose distributions in (166)Ho-loaded poly (L-lactic acid) microsphere ((166)Ho-PLLA-MS) liver radioembolization. <bold>Methods and Materials: </bold>MRI, computed tomography (CT), and single photon emission CT (SPECT) experiments were conducted on an anthropomorphic gel phantom with tumor-simulating gel samples and on an excised human tumor-bearing liver, both containing known amounts of (166)Ho-PLLA-MS. Three-dimensional radiation-absorbed dose distributions were estimated at the voxel level by convolving the (166)Ho activity distribution, derived from quantitative MRI data, with a (166)Ho dose point-kernel generated by MCNP (Monte Carlo N-Particle transport code) and from Medical Internal Radiation Dose Pamphlet 17. MRI-based radiation-absorbed dose distributions were qualitatively compared with CT and autoradiography images and quantitatively compared with SPECT-based dose distributions. Both MRI- and SPECT-based activity estimations were validated against dose calibrator measurements. <bold>Results: </bold>Evaluation on an anthropomorphic phantom showed that MRI enables accurate assessment of local (166)Ho-PLLA-MS mass and activity distributions, as supported by a regression coefficient of 1.05 and a correlation coefficient of 0.99, relating local MRI-based mass and activity calculations to reference values obtained with a dose calibrator. Estimated MRI-based radiation-absorbed dose distributions of (166)Ho-PLLA-MS in an ex vivo human liver visually showed high correspondence to SPECT-based radiation-absorbed dose distributions. Quantitative analysis revealed that the differences in local and total amounts of (166)Ho-PLLA-MS estimated by MRI, SPECT, and the dose calibrator were within 10%. Excellent agreement was observed between MRI- and SPECT-based dose-volume histograms. <bold>Conclusions: </bold>Quantitative MRI was demonstrated to provide accurate three-dimensional (166)Ho-PLLA-MS activity distributions, enabling localized intrahepatic radiation-absorbed dose estimation by convolution with a (166)Ho dose point-kernel for liver radioembolization treatment optimization and evaluation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03603016
Volume :
83
Issue :
3
Database :
Academic Search Index
Journal :
International Journal of Radiation Oncology, Biology, Physics
Publication Type :
Academic Journal
Accession number :
104451274
Full Text :
https://doi.org/10.1016/j.ijrobp.2011.12.085