Back to Search Start Over

Design of a statically balanced fully compliant grasper.

Authors :
Lamers, A.J.
Gallego Sánchez, Juan Andrés
Herder, Just L.
Source :
Mechanism & Machine Theory. Oct2015, Vol. 92, p230-239. 10p.
Publication Year :
2015

Abstract

Monolithic and thus fully compliant surgical graspers are promising when they provide equal or better force feedback than conventional graspers. In this work for the first time a fully compliant grasper is designed to exhibit zero stiffness and zero operation force. The design problem is addressed by taking a building block approach, in which a pre-existing positive stiffness compliant grasper is compensated by a negative stiffness balancer. The design of the balancer is conceived from a 4-bar linkage and explores the rigid-body-replacement method as a design approach towards static balancing. Design variables and sensitivities are determined through the use of a pseudo-rigid-body model. Final dimensions are obtained using rough hand calculations. Justification of the pseudo rigid body model as well as the set of final dimensions is done by non-linear finite element analysis. Experimental validation is done through a titanium prototype of 40 mm size having an unbalanced positive stiffness of 61.2 N/mm showing that a force reduction of 91.75% is achievable over a range of 0.6 mm, with an approximate hysteresis of 1.32%. The behavior can be tuned from monostable to bistable. The rigid-body-replacement method proved successful in the design of a statically balanced fully compliant mechanism, thus, widening the design possibilities for this kind of mechanism. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0094114X
Volume :
92
Database :
Academic Search Index
Journal :
Mechanism & Machine Theory
Publication Type :
Academic Journal
Accession number :
108845628
Full Text :
https://doi.org/10.1016/j.mechmachtheory.2015.05.014