Back to Search Start Over

Highly permeable artificial water channels that can self-assemble into two-dimensional arrays.

Authors :
Yue-xiao Shen
Wen Si
Erbakan, Mustafa
Decker, Karl
De Zorzi, Rita
Saboe, Patrick O.
You Jung Kang
Majd, Sheereen
Butler, Peter J.
Walz, Thomas
Aksimentiev, Aleksei
Jun-li Hou
Kumar, Manish
Source :
Proceedings of the National Academy of Sciences of the United States of America. 8/11/2015, Vol. 112 Issue 32, p9810-9815. 6p.
Publication Year :
2015

Abstract

Bioinspired artificial water channels aim to combine the high permeability and selectivity of biological aquaporin (AQP) water channels with chemical stability. Here, we carefully characterized a class of artificial water channels, peptide-appended pillar[5]arenes (PAPs). The average single-channel osmotic water permeability for PAPs is 1.0(±0.3) × 10-14 cm3/s or 3.5(±1.0) × 108 water molecules per s, which is in the range of AQPs (3.4~40.3 × 108 water molecules per s) and their current synthetic analogs, carbon nanotubes (CNTs, 9.0 × 108 water molecules per s). This permeability is an order of magnitude higher than first-generation artificial water channels (20 to ~107 water molecules per s). Furthermore, within lipid bilayers, PAP channels can self-assemble into 2D arrays. Relevant to permeable membrane design, the pore density of PAP channel arrays (~2.6 × 105 pores per μm2) is two orders of magnitude higher than that of CNT membranes (0.1~2.5 × 103 pores per μm2). PAP channels thus combine the advantages of biological channels and CNTs and improve upon them through their relatively simple synthesis, chemical stability, and propensity to form arrays. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
112
Issue :
32
Database :
Academic Search Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
108893305
Full Text :
https://doi.org/10.1073/pnas.1508575112