Back to Search Start Over

Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) production by Haloarchaeon Halogranum amylolyticum.

Authors :
Zhao, You-Xi
Rao, Zhi-Ming
Xue, Yan-Fen
Gong, Ping
Ji, Yi-Zhi
Ma, Yan-He
Source :
Applied Microbiology & Biotechnology. Sep2015, Vol. 99 Issue 18, p7639-7649. 11p.
Publication Year :
2015

Abstract

Haloarchaea is an important group of polyhydroxyalkanoate (PHA)-accumulating organisms. However, few promising haloarchaeal species for economical and efficient PHA production have been reported. Here, we first discovered that Halogranum amylolyticum TNN58 could efficiently accumulate poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV) with a high 3-hydroxyvalerate (3HV) fraction using glucose as carbon source. Briefly, transmission electron microscopy (TEM) analysis revealed the presence of a large number of PHA granules in the cells. Gas chromatography-mass spectrometry (GC-MS) and proton nuclear magnetic resonance (H NMR) analyses showed that PHAs synthesized from glucose was PHBV. Moreover, the 3HV content reached 20.1 mol%, which is the highest 3HV fraction thus far reported, as for PHBV produced by the wild-type strains grown on unrelated carbon courses. Fermentation experiments suggested that nitrogen-limited MG medium was better than nutrient-rich NOMG and AS168 medium for PHBV production. Additionally, glucose was the most suitable carbon source among the tested carbon sources. Interestingly, PHBV accumulation was almost paralleled by cell growth and glucose consumption. By applying the fed-batch process in fermentor, the PHBV production and cell dry weight were increased by approximately eight and four times, respectively, as compared with those of the batch process in shaking flasks. The classical PHA synthase genes were successfully cloned via consensus-degenerate hybrid oligonucleotide primers (CODEHOPs) and high-efficiency thermal asymmetric interlaced (hiTAIL) PCR methods. This finding suggested that H. amylolyticum shows promising potential in the low-cost biotechnological production of PHBV after further process optimization. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01757598
Volume :
99
Issue :
18
Database :
Academic Search Index
Journal :
Applied Microbiology & Biotechnology
Publication Type :
Academic Journal
Accession number :
109016777
Full Text :
https://doi.org/10.1007/s00253-015-6609-y