Back to Search Start Over

Robust platform for engineering pure-quantum-state transitions in polariton condensates.

Authors :
Askitopoulos, A.
Liew, T. C. H.
Ohadi, H.
Hatzopoulos, Z.
Savvidis, P. G.
Lagoudakis, P. G.
Source :
Physical Review B: Condensed Matter & Materials Physics. Jul2015, Vol. 92 Issue 3, p1-1. 1p.
Publication Year :
2015

Abstract

We report on pure-quantum-state polariton condensates in optical annular traps. The study of the underlying mechanism reveals that the polariton wave function always coalesces in a single pure quantum state that, counterintuitively, is always the uppermost confined state with the highest overlap with the exciton reservoir. The tunability of such states combined with the short polariton lifetime allows for ultrafast transitions between coherent mesoscopic wave functions of distinctly different symmetries, rendering optically confined polariton condensates a promising platform for applications such as many-body quantum circuitry and continuous-variable quantum processing. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10980121
Volume :
92
Issue :
3
Database :
Academic Search Index
Journal :
Physical Review B: Condensed Matter & Materials Physics
Publication Type :
Academic Journal
Accession number :
109196758
Full Text :
https://doi.org/10.1103/PhysRevB.92.035305