Back to Search Start Over

Enhancing Both Efficiency and Representational Capability of Isomap by Extensive Landmark Selection.

Authors :
Liang, Dong
Qiao, Chen
Xu, Zongben
Source :
Mathematical Problems in Engineering. 3/19/2015, Vol. 2015, p1-18. 18p.
Publication Year :
2015

Abstract

The problems of improving computational efficiency and extending representational capability are the two hottest topics in approaches of global manifold learning. In this paper, a new method called extensive landmark Isomap (EL-Isomap) is presented, addressing both topics simultaneously. On one hand, originated from landmark Isomap (L-Isomap), which is known for its high computational efficiency property, EL-Isomap also possesses high computational efficiency through utilizing a small set of landmarks to embed all data points. On the other hand, EL-Isomap significantly extends the representational capability of L-Isomap and other global manifold learning approaches by utilizing only an available subset from the whole landmark set instead of all to embed each point. Particularly, compared with other manifold learning approaches, the data manifolds with intrinsic low-dimensional concave topologies and essential loops can be unwrapped by the new method more successfully, which are shown by simulation results on a series of synthetic and real-world data sets. Moreover, the accuracy, robustness, and computational complexity of EL-Isomap are analyzed in this paper, and the relation between EL-Isomap and L-Isomap is also discussed theoretically. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1024123X
Volume :
2015
Database :
Academic Search Index
Journal :
Mathematical Problems in Engineering
Publication Type :
Academic Journal
Accession number :
109272617
Full Text :
https://doi.org/10.1155/2015/241436