Back to Search Start Over

A Novel Multiobjective Optimization Algorithm for Home Energy Management System in Smart Grid.

Authors :
Zhang, Yanyu
Zeng, Peng
Li, Shuhui
Zang, Chuanzhi
Li, Hepeng
Source :
Mathematical Problems in Engineering. 4/30/2015, Vol. 2015, p1-19. 19p.
Publication Year :
2015

Abstract

Demand response (DR) is an effective method to lower peak-to-average ratio of demand, facilitate the integration of renewable resources (e.g., wind and solar) and plug-in hybrid electric vehicles, and strengthen the reliability of power system. In smart grid, implementing DR through home energy management system (HEMS) in residential sector has a great significance. However, an algorithm that only optimally controls parts of HEMS rather than the overall system cannot obtain the best results. In addition, single objective optimization algorithm that minimizes electricity cost cannot quantify user’s comfort level and cannot take a tradeoff between electricity cost and comfort level conveniently. To tackle these problems, this paper proposes a framework of HEMS that consists of grid, load, renewable resource (i.e., solar resource), and battery. In this framework, a user has the ability to sell electricity to utility grid for revenue. Different comfort level indicators are proposed for different home appliances according to their characteristics and user preferences. Based on these comfort level indicators, this paper proposes a multiobjective optimization algorithm for HEMS that minimizes electricity cost and maximizes user’s comfort level simultaneously. Simulation results indicate that the algorithm can reduce user’s electricity cost significantly, ensure user’s comfort level, and take a tradeoff between the cost and comfort level conveniently. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1024123X
Volume :
2015
Database :
Academic Search Index
Journal :
Mathematical Problems in Engineering
Publication Type :
Academic Journal
Accession number :
109272733
Full Text :
https://doi.org/10.1155/2015/807527