Back to Search Start Over

ROS-mediated bidirectional regulation of miRNA results in distinct pathologic heart conditions.

Authors :
Seahyoung Lee
Soyeon Lim
Onju Ham
Se-Yeon Lee
Chang Yeon Lee
Jun-Hee Park
Jiyun Lee
Hyang-Hee Seo
Ina Yun
Sun M. Han
Min-Ji Cha
Eunhyun Choi
Ki-Chul Hwang
Source :
Biochemical & Biophysical Research Communications. 9/25/2015, Vol. 465 Issue 3, p349-355. 7p.
Publication Year :
2015

Abstract

Under distinct pathological heart conditions, the expression of a single miRNA can display completely opposite patterns. However, the mechanism underlying the bidirectional regulation of a single miRNA and the clinical implications of this regulation remain largely unknown. To address this issue, we examined the regulation of miR-1, one of the most abundant miRNAs in the heart, during cardiac hypertrophy and ischemia/reperfusion (I/R). Our data indicated that different magnitudes and chronicities of ROS levels in cardiomyocytes resulted in differential expression of miR-1, subsequently altering the expression of myocardin. In animal models, the administration of a miR-1 mimic attenuated cardiac hypertrophy by suppressing the transverse aortic constriction-induced increase in myocardin expression, whereas the administration of anti-miR-1 ameliorated I/R-induced cardiac apoptosis and deterioration of heart function. Our findings indicated that a pathologic stimulus such as ROS can bidirectionally alter the expression of miRNA to contribute to the development of pathological conditions exhibiting distinct phenotypes and that the meticulous adjustment of the pathological miRNA levels is required to improve clinical outcomes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0006291X
Volume :
465
Issue :
3
Database :
Academic Search Index
Journal :
Biochemical & Biophysical Research Communications
Publication Type :
Academic Journal
Accession number :
109313820
Full Text :
https://doi.org/10.1016/j.bbrc.2015.07.160