Back to Search Start Over

Electronic Structure of Ru2(II,II) Oxypyridinates: Synthetic, Structural, and Theoretical Insights into Axial Ligand Binding.

Authors :
Brown, Tristan R.
Dolinar, Brian S.
Berry, John F.
Hillard, Elizabeth A.
Clérac, Rodolphe
Source :
Inorganic Chemistry. 9/8/2015, Vol. 54 Issue 17, p8571-8589. 19p.
Publication Year :
2015

Abstract

Reduction of (4,0)-Ru2(chp)4Cl (1) (chp = 6-chloro-2-oxypyridinate) with Zn or FeCl2 yields a series of axial ligand adducts of the Ru2(II,II) species Ru2(chp)4(L), with L = tetrahydrofuran (2), dimethyl sulfoxide (DMSO; 3), PPh3 (4), pyridine (5), or MeCN (6). Zn reduction in noncoordinating solvents such as toluene or CH2Cl2 leads to the dimeric species [Ru2(chp)4]2 (7) or [Ru2(chp)4]2(ZnCl2) (8), whereas addition of strongly σ-donating ligands such as CO causes cleavage of the Ru-Ru bond. Density functional theory (DFT) models of these complexes, the axially free species, and the axial adducts of several other potential ligands (H2O, NH3, CH2Cl2, S-bound DMSO, N2, and CO) indicate that these compounds can be divided into three distinct categories, based on their Ru-Ru bond length and electronic structure. Compounds 2, 3, 5, 6, 7, and 8, the hypothetical axially free species, and adducts of H2O and NH3 fit in Category 1 with a (δ*)²(π*)² ground state, as indicated by their electronic spectra, magnetic properties, and Ru-Ru bond distances. However, compound 4 and the CH2Cl2 adduct (Category 2) show a pseudo-Jahn-Teller distortion and spectroscopic signs of δ*/π* orbital mixing suggestive of a new electronic ground state intermediate between the (δ*)²(π*)² and (δ*)¹(π*)³ configurations. Category 3 consists of the hypothetical adducts of N2, S-bound DMSO, and CO, all of which are predicted to have a (δ*)¹(π*)³ configuration. Electronic spectra were recorded and assigned using time-dependent DFT, allowing assignment of a band in the 10 000-13 000 cm-1 range as the δ → π* transition. The axial ligand's π-acid character heavily influences the δ*−π* gap, and thereby the ground-state electronic configuration, but not the axial ligand binding strength, which is dictated more by the σ-donor character of the ligands. Thus, this work greatly expands the number of axial ligand adducts known for Ru2(II,II) complexes supported by N,O-donor ligands and provides a predictive theoretical framework for their stability and electronic structures. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00201669
Volume :
54
Issue :
17
Database :
Academic Search Index
Journal :
Inorganic Chemistry
Publication Type :
Academic Journal
Accession number :
109947560
Full Text :
https://doi.org/10.1021/acs.inorgchem.5b01241