Back to Search Start Over

Solid Solution Domains at Phase Transition Front of LixNi0.5Mn1.5O4.

Authors :
Hideyuki Komatsu
Hajime Arai
Yukinori Koyama
Kenji Sato
Takeharu Kato
Ryuji Yoshida
Haruno Murayama
Ikuma Takahashi
Yuki Orikasa
Katsutoshi Fukuda
Tsukasa Hirayama
Yuichi Ikuhara
Yoshio Ukyo
Yoshiharu Uchimoto
Zempachi Ogumi
Source :
Advanced Energy Materials. 9/9/2015, p1-7. 7p.
Publication Year :
2015

Abstract

Nickel-substituted manganese spinel LiNi0.5Mn1.5O4 (LNMO) is a promising 5 V class positive electrode material for lithium-ion batteries. As micronsized LNMO particles show high rate capability in its two-phase coexistence regions, the phase transition mechanism is of great interest in understanding the electrode behavior at high rates. Here, the phase transition dynamics of LixNi0.5Mn1.5O4 is elucidated on high rate charging-discharging using operando time-resolved X-ray diffraction (TR-XRD). The TR-XRD results indicate the existence of intermediate states, in addition to the thermodynamically stable phases, and it is shown that the origin of such intermediate states is ascribed to the solid-solution domains at the phase transition front, as supported by the analysis using transmission electron microscopy coupled with electron energy-loss spectroscopy. The phase transition pathways dependent on the reaction rate are shown, together with possible explanation for this unique transition behavior. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16146832
Database :
Academic Search Index
Journal :
Advanced Energy Materials
Publication Type :
Academic Journal
Accession number :
110122879
Full Text :
https://doi.org/10.1002/aenm.201500638