Back to Search Start Over

Corin is down-regulated and exerts cardioprotective action via activating pro-atrial natriuretic peptide pathway in diabetic cardiomyopathy.

Authors :
Aiming Pang
Yahui Hu
Pengfei Zhou
Guangfeng Long
Xin Tian
Li Men
Yanna Shen
Yunde Liu
Yujie Cui
Source :
Cardiovascular Diabetology. 10/8/2015, Vol. 14 Issue 1, p1-13. 13p. 1 Black and White Photograph, 5 Graphs.
Publication Year :
2015

Abstract

Background: Diabetic cardiomyopathy (DCM), a fatal cardiovascular complication of diabetes mellitus, often leads to progressive heart failure, however its pathogenesis remains unclear. Corin, a cardiac serine protease, is responsible for converting pro-atrial natriuretic peptide (pro-ANP) to biologically active atrial natriuretic peptide (ANP). It has been well established that corin deficiency is associated with the progression of hypertension, cardiac hypertrophy and heart failure. However, because the involvement of corin-mediated pro-ANP processing in DCM has not been clarified, this study aims to investigate the role of corin in the pathogenesis of DCM. Methods: Diabetes mellitus was induced by a single intraperitoneal injection of streptozotocin (STZ 65 mg/kg) to Sprague-Dawley rats (180-220 g). DCM was confirmed by monitoring continuously transthoracic echocardiography every 4 weeks and hemodynamic measurements at 20 weeks. Myocardial disorder and fibrosis were detected by HE staining and Masson's trichrome staining. The mRNA and protein levels of corin and ANP in rat hearts and cardiomyocytes were determined by quantitative real-time PCR, western blotting and immunohistochemical staining, respectively. H9c2 cardiomyoblasts proliferation was detected by MTT colorimetric assay and viable cell counting with trypan blue. The effect of Corin-siRNA H9c2 cardiomyoblasts on EA.hy926 cells migration was measured by the wound healing scratch assay. Results: The corin and ANP expression in mRNA and protein levels was decreased in DCM rat hearts. Corin and ANP levels of neonatal rat cardiomyocytes and H9c2 cardiomyoblasts treated with high glucose were significantly lower than that of normal glucose treated. Precisely, corin and ANP levels decreased in DCM rats at 12, 16, 20 and 33 weeks; neonatal cardiomyocytes and H9c2 cardiomyoblasts treated with high glucose at 36, 48 and 60 h demonstrated significant reduction in corin and ANP levels. Corin-siRNA H9c2 cardiomyoblasts showed decreased proliferation. Culture supernatants of Corin-siRNA H9c2 cardiomyoblasts prevented endothelial cell line EA.hy926 migration in the wound healing scratch assay. Furthermore, iso-lectin expression in arteriole and capillary endothelium was down-regulated in DCM rats. Conclusions: Our results indicate that corin plays an important role in cardioprotection by activating pro-atrial natriuretic peptide pathway in DCM. Corin deficiency leads to endothelial dysfunction and vascular remodeling. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14752840
Volume :
14
Issue :
1
Database :
Academic Search Index
Journal :
Cardiovascular Diabetology
Publication Type :
Academic Journal
Accession number :
110208858
Full Text :
https://doi.org/10.1186/s12933-015-0298-9