Back to Search Start Over

Controlled mud-crack patterning and self-organized cracking of polydimethylsiloxane elastomer surfaces.

Authors :
Seghir, Rian
Arscott, Steve
Source :
Scientific Reports. 10/9/2015, p1-16. 16p.
Publication Year :
2015

Abstract

Exploiting pattern formation - such as that observed in nature - in the context of micro/nanotechnology could have great benefits if coupled with the traditional top-down lithographic approach. Here, we demonstrate an original and simple method to produce unique, localized and controllable self-organised patterns on elastomeric films. A thin, brittle silica-like crust is formed on the surface of polydimethylsiloxane (PDMS) using oxygen plasma. This crust is subsequently cracked via the deposition of a thin metal film - having residual tensile stress. The density of the mud-crack patterns depends on the plasma dose and on the metal thickness. The mud-crack patterning can be controlled depending on the thickness and shape of the metallization - ultimately leading to regularly spaced cracks and/or metal mesa structures. Such patterning of the cracks indicates a level of self-organization in the structuring and layout of the features - arrived at simply by imposing metallization boundaries in proximity to each other, separated by a distance of the order of the critical dimension of the pattern size apparent in the large surface mud-crack patterns. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
110327926
Full Text :
https://doi.org/10.1038/srep14787