Back to Search Start Over

Estrogen Receptor (ER)-α36 Is Involved in Estrogen- and Tamoxifen-Induced Neuroprotective Effects in Ischemic Stroke Models.

Authors :
Zou, Wei
Fang, Chen
Ji, Xiaofei
Liang, Xiaofeng
Liu, Yang
Han, Chao
Huang, Liang
Zhang, Qiqi
Li, Hongyan
Zhang, Yejun
Liu, Jinqiu
Liu, Jing
Source :
PLoS ONE. 10/20/2015, Vol. 10 Issue 10, p1-14. 14p.
Publication Year :
2015

Abstract

The neuroprotection by estrogen (E2) and tamoxifen is well documented in experimental stroke models; however, the exact mechanism is unclear. A membrane-based estrogen receptor, ER-α36, has been identified. Postmenopausal-levels of E2 act through ER-α36 to induce osteoclast apoptosis due to a prolonged activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK) signaling. We hypothesized that ER-α36 may play a role in the neuroprotective activities of estrogen and tamoxifen. Here, we studied ER-α36 expression in the brain, as well as its neuroprotective effects against oxygen and glucose deprivation (OGD) in PC12 cells. We found that ER-α36 was expressed in both rat and human brain. In addition, OGD-induced cell death was prevented by l nmol/L 17β-estradiol (E2β). E2β activates the MAPK/ERK signaling pathway in PC12 cells under basal and OGD conditions by interacting with ER-α36 and also induces ER-α36 expression. Low-dose of tamoxifen up-regulated ER-α36 expression and enhanced neuronal survival in an ovariectomized ischemic stroke model. Furthermore, low-dose of tamoxifen enhanced neuroprotective effects by modulating activates or suppress ER-α36. Our results thus demonstrated that ER-α36 is involved in neuroprotective activities mediated by both estrogen and tamoxifen. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
10
Issue :
10
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
110439201
Full Text :
https://doi.org/10.1371/journal.pone.0140660