Back to Search Start Over

Secondary structure and membrane topology of dengue virus NS4B N-terminal 125 amino acids.

Authors :
Li, Yan
Kim, Young Mee
Zou, Jing
Wang, Qing-Yin
Gayen, Shovanlal
Wong, Ying Lei
Lee, Le Tian
Xie, Xuping
Huang, Qiwei
Lescar, Julien
Shi, Pei-Yong
Kang, CongBao
Source :
BBA: Biomembranes. Dec2015, Vol. 1848 Issue 12, p3150-3157. 8p.
Publication Year :
2015

Abstract

The transmembrane NS4B protein of dengue virus (DENV) is a validated antiviral target that plays important roles in viral replication and invasion of innate immune response. The first 125 amino acids of DENV NS4B are sufficient for inhibition of alpha/beta interferon signaling. Resistance mutations to NS4B inhibitors are all mapped to the first 125 amino acids. In this study, we expressed and purified a protein representing the first 125 amino acids of NS4B (NS4B 1–125 ). This recombinant NS4B 1–125 protein was reconstituted into detergent micelles. Solution NMR spectroscopy demonstrated that there are five helices (α1 to α5) present in NS4B 1–125 . Dynamic studies, together with a paramagnetic relaxation enhancement experiment demonstrated that four helices, α2, α3, α4, and α5 are embedded in the detergent micelles. Comparison of wild type and V63I mutant (a mutation that confers resistance to NS4B inhibitor) NS4B 1–125 proteins demonstrated that V63I mutation did not cause significant conformational changes, however, V63 may have a molecular interaction with residues in the α5 transmembrane domain under certain conditions. The structural and dynamic information obtained in study is helpful to understand the structure and function of NS4B. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00052736
Volume :
1848
Issue :
12
Database :
Academic Search Index
Journal :
BBA: Biomembranes
Publication Type :
Academic Journal
Accession number :
110532891
Full Text :
https://doi.org/10.1016/j.bbamem.2015.09.016