Back to Search Start Over

SENP1 inhibits the IH-induced apoptosis and nitric oxide production in BV2 microglial cells.

Authors :
Liu, Song
Wang, Zhong-hua
Xu, Bo
Chen, Kui
Sun, Jin-yuan
Ren, Lian-ping
Source :
Biochemical & Biophysical Research Communications. Nov2015, Vol. 467 Issue 4, p651-656. 6p.
Publication Year :
2015

Abstract

To reveal SUMOylation and the roles of Sentrin-specific proteases (SENP)s in microglial cells under Intermittent hypoxia (IH) condition would provide more intensive view of understanding the mechanisms of IH-induced central nervous system (CNS) damage. Hence, in the present study, we detected the expression levels of SENPs in microglial cells under IH and normoxia conditions via RT-PCR assay. We found that SENP1 was significantly down-regulated in cells exposure to IH. Subsequently, the effect of IH for the activation of microglia and the potential roles of SENP1 in the SENP1-overexpressing cell lines were investigated via Western blotting, RT-PCR and Griess assay. The present study demonstrated the apoptosis-inducing and activating role of IH on microglia. In addition, we revealed that the effect of IH on BV-2 including apoptosis, nitric oxide synthase (iNOS) expression and nitric oxide (NO) induction can be attenuated by SENP1 overexpression. The results of the present study are of both theoretical and therapeutic significance to explore the potential roles of SENP1 under IH condition and elucidated the mechanisms underlying microglial survival and activation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0006291X
Volume :
467
Issue :
4
Database :
Academic Search Index
Journal :
Biochemical & Biophysical Research Communications
Publication Type :
Academic Journal
Accession number :
110854001
Full Text :
https://doi.org/10.1016/j.bbrc.2015.10.092