Back to Search Start Over

Toxicity Minimized Cryoprotectant Addition and Removal Procedures for Adherent Endothelial Cells.

Authors :
Davidson, Allyson Fry
Glasscock, Cameron
McClanahan, Danielle R.
Benson, James D.
Higgins, Adam Z.
Source :
PLoS ONE. 11/25/2015, Vol. 10 Issue 11, p1-22. 22p.
Publication Year :
2015

Abstract

Ice-free cryopreservation, known as vitrification, is an appealing approach for banking of adherent cells and tissues because it prevents dissociation and morphological damage that may result from ice crystal formation. However, current vitrification methods are often limited by the cytotoxicity of the concentrated cryoprotective agent (CPA) solutions that are required to suppress ice formation. Recently, we described a mathematical strategy for identifying minimally toxic CPA equilibration procedures based on the minimization of a toxicity cost function. Here we provide direct experimental support for the feasibility of these methods when applied to adherent endothelial cells. We first developed a concentration- and temperature-dependent toxicity cost function by exposing the cells to a range of glycerol concentrations at 21°C and 37°C, and fitting the resulting viability data to a first order cell death model. This cost function was then numerically minimized in our state constrained optimization routine to determine addition and removal procedures for 17 molal (mol/kg water) glycerol solutions. Using these predicted optimal procedures, we obtained 81% recovery after exposure to vitrification solutions, as well as successful vitrification with the relatively slow cooling and warming rates of 50°C/min and 130°C/min. In comparison, conventional multistep CPA equilibration procedures resulted in much lower cell yields of about 10%. Our results demonstrate the potential for rational design of minimally toxic vitrification procedures and pave the way for extension of our optimization approach to other adherent cell types as well as more complex systems such as tissues and organs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
10
Issue :
11
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
111228330
Full Text :
https://doi.org/10.1371/journal.pone.0142828