Back to Search Start Over

Effects of occlusion on mandibular morphology and architecture in rats.

Authors :
Liu, Jia
Liu, Shi-Yu
Zhao, Ya-Juan
Gu, Xu
Li, Qiang
Jin, Zuo-Lin
Chen, Yong-Jin
Source :
Journal of Surgical Research. Feb2016, Vol. 200 Issue 2, p533-543. 11p.
Publication Year :
2016

Abstract

Background A rodent occlusal hypofunction model has been widely established in jawbone-related studies. However, the effects of occlusal stimuli, with total elimination of molar contacts, and its rehabilitation on mandibular remodeling remain unclear. Materials and methods Forty-eight 5-wk-old Sprague–Dawley male rats were used. Twenty-four experimental rats underwent occlusal hypofunction by insertion of a bite-raising appliance. Twenty-four rats received no treatment (control group). Two weeks later, half the experimental rats (occlusal hypofunction group) were killed; the appliance was removed from the remaining experimental rats (recovery group) for two additional weeks before killing. Control animals were killed biweekly. Body weight and masseter muscle weight were measured, and the mandibles were subjected to micro-computed tomography to evaluate the mandibular morphology and cortical bone characteristics. The expressions of osteoblast- and osteoclast-related genes were evaluated with quantitative polymerase chain reaction. Results No significant body weight differences were observed between the experimental and control rats. However, lighter masseter muscle, shorter mandibular incisor crown, mandibular body and ramus, and higher mandibular alveolar process and first molar fossae were observed in the occlusal hypofunction group. Moreover, the cortical bone characteristics associated with the expression of osteoblast- and osteoclast-related genes were remarkably different in the central and posterior mandible in the occlusal hypofunction group. At the 2-wk recovery time point after occlusal stimuli, the altered parameters in the masseter and mandible returned to normal levels. Conclusions Mandibular remodeling via bone turnover is region specific for altered occlusal stimuli. Normal occlusion is an important determinant of the mandibular morphology and architecture. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00224804
Volume :
200
Issue :
2
Database :
Academic Search Index
Journal :
Journal of Surgical Research
Publication Type :
Academic Journal
Accession number :
111739065
Full Text :
https://doi.org/10.1016/j.jss.2015.09.025