Back to Search Start Over

Sub-20 nm anatase particles uniformly anchored on graphene oxide and reduced graphene oxide nanosheets and their photocatalytic oxidation and Li-ion storage capabilities.

Authors :
Liu, Shaohong
Wen, Lei
Chen, Jialin
Li, Ji-Guang
Sun, Xudong
Li, Xiaodong
Source :
Ceramics International. Feb2016, Vol. 42 Issue 3, p3907-3915. 9p.
Publication Year :
2016

Abstract

Nanosized anatase TiO 2 particles anchored on nanocarbon substrates have great potential for practical applications in high-performance lithium ion batteries and efficient photocatalysts. The synthesis of this material usually utilizes calcination to crystallize amorphous titania, which normally causes the formation of aggregates and some side effects. In this work, we demonstrated that sub-20 nm anatase particles uniformly anchored on graphene oxide and reduced graphene oxide nanosheets in aqueous solution at a temperature of 90 °C and atmospheric pressure, without further calcination. The photocatalytic oxidation activity and electrochemical properties of graphene oxide/anatase TiO 2 (GO/A) and reduced graphene oxide/anatase TiO 2 (RGO/A) were comparatively investigated. We found that GO/A showed higher photocatalytic oxidation activity than RGO/A under UV light irradiation. Graphene oxide accepted electrons and suffered reduction, which finally decreased GO/A’s photocatalytic oxidation activity to an extent similar to RGO/A. We also found that, as anode material for Li-ion battery, the specific capacity of RGO/A was nearly three times that of GO/A at the same current rate. This study will inspire better design of metal oxide/nanocarbon nanocomposites for high performance lithium ion battery and photocatalysis applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02728842
Volume :
42
Issue :
3
Database :
Academic Search Index
Journal :
Ceramics International
Publication Type :
Academic Journal
Accession number :
111978482
Full Text :
https://doi.org/10.1016/j.ceramint.2015.11.057