Back to Search
Start Over
The Genome and Methylome of a Beetle with Complex Social Behavior, Nicrophorus vespilloides (Coleoptera: Silphidae).
- Source :
-
Genome Biology & Evolution . Dec2015, Vol. 7 Issue 12, p3383-3396. 14p. - Publication Year :
- 2015
-
Abstract
- Testing for conserved and novel mechanisms underlying phenotypic evolution requires a diversity of genomes available for comparison spanning multiple independent lineages. For example, complex social behavior in insects has been investigated primarily with eusocial lineages, nearly all of which are Hymenoptera. If conserved genomic influences on sociality do exist, we need data from a wider range of taxa that also vary in their levels of sociality. Here, we present the assembled and annotated genome of the subsocial beetle Nicrophorus vespilloides, a species long used to investigate evolutionary questions of complex social behavior. We used this genome to address two questions. First, do aspects of life history, such as using a carcass to breed, predict overlap in gene models more strongly than phylogeny? We found that the overlap in gene models was similar between N. vespilloides and all other insect groups regardless of life history. Second, like other insects with highly developed social behavior but unlike other beetles, does N. vespilloides have DNA methylation? We found strong evidence for an active DNA methylation system. The distribution of meth-ylation was similar to other insects with exons having the most methylated CpGs. Methylation status appears highly conserved; 85% of the methylated genes in N. vespilloides are also methylated in the hymentopteran Nasonia vitripennis. The addition of this genome adds a coleopteran resource to answer questions about the evolution and mechanistic basis of sociality and to address questions about the potential role of methylation in social behavior. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 17596653
- Volume :
- 7
- Issue :
- 12
- Database :
- Academic Search Index
- Journal :
- Genome Biology & Evolution
- Publication Type :
- Academic Journal
- Accession number :
- 112239972
- Full Text :
- https://doi.org/10.1093/gbe/evv194