Back to Search Start Over

Magnetic sensing film based on Fe3O4@Au-GSH molecularly imprinted polymers for the electrochemical detection of estradiol.

Authors :
Han, Qing
Shen, Xin
Zhu, Wanying
Zhu, Chunhong
Zhou, Xuemin
Jiang, Huijun
Source :
Biosensors & Bioelectronics. May2016, Vol. 79, p180-186. 7p.
Publication Year :
2016

Abstract

A novel magnetic molecularly imprinted sensing film (MMISF) was fabricated for the determination of estradiol (E2) based on magnetic glassy carbon electrode (MGCE) and magnetic molecularly imprinted polymers (MMIPs). The MMIPs were synthesized by in situ polymerization of glutathione (GSH)-functionalized gold (Au)-coated Fe 3 O 4 (Fe 3 O 4 @Au-GSH) nanocomposites and aniline. The MMISF was constructed with MMIPs via a kind of “soft modification” where MMIPs were assembled and immobilized on the surface of MGCE or removed from it by freely installing a magnet into MGCE or not. The E2-MMIPs were obtained by MMIPs recognizing E2 from sample, and the electrochemical detection was carried out after forming the “soft modification” sensing film by putting MGCE into the E2-MMIPs suspension liquid. Afterwards, the “soft modification” MMISF was peeled off from the electrode by removing the magnet from MGCE. The interface of the electrode could be quickly refreshed through simple treatment for the next detection. The structures and morphologies of Fe 3 O 4 @Au-GSH, MMIPs and MMISF were investigated by Fourier transform infrared spectrometer, ultraviolet and visible spectrophotometer, scanning electron microscope and atomic force microscope. In addition, the MMISF was successfully used for detecting E2 in milk powder with good sensitivity, selectivity, reproducibility and efficiency. The linear range of the MMISF for E2 was 0.025–10.0 μmol L −1 with the limit of detection of 2.76 nmol L −1 ( S / N = 3). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09565663
Volume :
79
Database :
Academic Search Index
Journal :
Biosensors & Bioelectronics
Publication Type :
Academic Journal
Accession number :
112676809
Full Text :
https://doi.org/10.1016/j.bios.2015.12.017