Back to Search Start Over

Integrating Geometrical Context for Semantic Labeling of Indoor Scenes using RGBD Images.

Authors :
Khan, Salman
Bennamoun, Mohammed
Sohel, Ferdous
Togneri, Roberto
Naseem, Imran
Source :
International Journal of Computer Vision. Mar2016, Vol. 117 Issue 1, p1-20. 20p.
Publication Year :
2016

Abstract

Inexpensive structured light sensors can capture rich information from indoor scenes, and scene labeling problems provide a compelling opportunity to make use of this information. In this paper we present a novel conditional random field (CRF) model to effectively utilize depth information for semantic labeling of indoor scenes. At the core of the model, we propose a novel and efficient plane detection algorithm which is robust to erroneous depth maps. Our CRF formulation defines local, pairwise and higher order interactions between image pixels. At the local level, we propose a novel scheme to combine energies derived from appearance, depth and geometry-based cues. The proposed local energy also encodes the location of each object class by considering the approximate geometry of a scene. For the pairwise interactions, we learn a boundary measure which defines the spatial discontinuity of object classes across an image. To model higher-order interactions, the proposed energy treats smooth surfaces as cliques and encourages all the pixels on a surface to take the same label. We show that the proposed higher-order energies can be decomposed into pairwise sub-modular energies and efficient inference can be made using the graph-cuts algorithm. We follow a systematic approach which uses structured learning to fine-tune the model parameters. We rigorously test our approach on SUN3D and both versions of the NYU-Depth database. Experimental results show that our work achieves superior performance to state-of-the-art scene labeling techniques. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09205691
Volume :
117
Issue :
1
Database :
Academic Search Index
Journal :
International Journal of Computer Vision
Publication Type :
Academic Journal
Accession number :
113221193
Full Text :
https://doi.org/10.1007/s11263-015-0843-8