Back to Search Start Over

Modification with mesoporous platinum and poly(pyrrole-3-carboxylic acid)-based copolymer on boron-doped diamond for nonenzymatic sensing of hydrogen peroxide.

Authors :
Cui, Hui-Fang
Bai, Yan-Feng
Wu, Wen-Wen
He, Xiaoyun
Luong, John H.T.
Source :
Journal of Electroanalytical Chemistry. Apr2016, Vol. 766, p52-59. 8p.
Publication Year :
2016

Abstract

A sensitive, accurate, free of oxygen interference electrochemical sensing approach was developed in this study for H 2 O 2 level, an important parameter in clinical, biological and environmental fields. A boron-doped diamond (BDD) electrode was modified with mesoporous platinum (MPrPt) by electrodeposition of Pt–Cu alloy and anodic dissolution of Cu from the alloy, followed by the electropolymerization of a poly(pyrrole-3-carboxylic acid) (PPy3C) and polypyrrole (PPy) (PPy3C: PPy = 4:1, molar ratio) copolymer. SEM micrographs revealed that MPrPt irregularly spreads on the BDD surface as ~ 100 nm mesoporous and snow-flake-like nanoclusters, with a pore size of 10 ~ 15 nm, and a trace amount of remnant Cu. The resulting Pt roughness factor and the effective surface area of the MPrPt/BDD were significantly larger, and its charge-transfer resistance was much smaller than those of the Pt nanoparticle modified BDD electrode. The PPy3C–PPy/MPrPt/BDD electrode exhibited very much sensitive, selective, precise, accurate, stable, reproducible, and a wide linear range of H 2 O 2 responses at neutral pH under ambient condition, with similar sensitivity and S/N ratio to those under nitrogen protection. The limit of detection (LOD) for H 2 O 2 was 2 μM, with linearity range of 5 μM ~ 49 mM (4 orders of magnitude). The BDD substrate, MPrPt, and the PPy3C–PPy copolymer together exerted a synergic effect to the prominent sensing performance. The detection was free from endogenous oxygen interference, one of the most critical issues in microanalysis, in vivo monitoring and field applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15726657
Volume :
766
Database :
Academic Search Index
Journal :
Journal of Electroanalytical Chemistry
Publication Type :
Academic Journal
Accession number :
113427810
Full Text :
https://doi.org/10.1016/j.jelechem.2016.01.026