Back to Search Start Over

Feasible Initial Population with Genetic Diversity for a Population-Based Algorithm Applied to the Vehicle Routing Problem with Time Windows.

Authors :
Cruz-Chávez, Marco Antonio
Martínez-Oropeza, Alina
Source :
Mathematical Problems in Engineering. 2/17/2016, p1-11. 11p.
Publication Year :
2016

Abstract

A stochastic algorithm for obtaining feasible initial populations to the Vehicle Routing Problem with Time Windows is presented. The theoretical formulation for the Vehicle Routing Problem with Time Windows is explained. The proposed method is primarily divided into a clustering algorithm and a two-phase algorithm. The first step is the application of a modified k-means clustering algorithm which is proposed in this paper. The two-phase algorithm evaluates a partial solution to transform it into a feasible individual. The two-phase algorithm consists of a hybridization of four kinds of insertions which interact randomly to obtain feasible individuals. It has been proven that different kinds of insertions impact the diversity among individuals in initial populations, which is crucial for population-based algorithm behavior. A modification to the Hamming distance method is applied to the populations generated for the Vehicle Routing Problem with Time Windows to evaluate their diversity. Experimental tests were performed based on the Solomon benchmarking. Experimental results show that the proposed method facilitates generation of highly diverse populations, which vary according to the type and distribution of the instances. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1024123X
Database :
Academic Search Index
Journal :
Mathematical Problems in Engineering
Publication Type :
Academic Journal
Accession number :
113599805
Full Text :
https://doi.org/10.1155/2016/3851520