Back to Search Start Over

An improved modeling for life prediction of high-power white LED based on Weibull right approximation method.

Authors :
Zhang, Jianping
Chen, Wenlong
Wang, Chen
Chen, Xiao
Cheng, Guoliang
Qiu, Yingji
Wu, Helen
Source :
Microelectronics Reliability. Apr2016, Vol. 59, p49-54. 6p.
Publication Year :
2016

Abstract

Aiming at precisely predicting the life of the high-power white light LED (HPWLED), a three-parameter Weibull function and the right approximation method were employed to establish the luminance degradation model. The lumen maintenance data collected according to the IES LM-80-08 lumen maintenance test standard were fitted with and without error corrections, and the pseudo failure time of each HPWLED sample was extrapolated. The statistical analysis on the failure time was achieved by using Weibull distribution, normal distribution, lognormal distribution and Akaike Information Criterion (AIC). Then the life information was acquired. The results indicate that Weibull right approximation luminance degradation model (WRALDM) accurately reflects the variation of the lumen law with time. The failure time is accurately obtained. The best life distributions before and after the error correction to the lumen maintenance data are identified, based on AIC, as Weibull distribution and lognormal distribution, respectively. It is further confirmed by comparing the widths of life confidence interval and the life provided by the IES TM-21-11 method that the HPWLED life using WRALDM has a better accuracy. The optimized model provides researchers and manufacturers with significant guidelines for the further development of life prediction methodology. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00262714
Volume :
59
Database :
Academic Search Index
Journal :
Microelectronics Reliability
Publication Type :
Academic Journal
Accession number :
114176364
Full Text :
https://doi.org/10.1016/j.microrel.2015.12.040