Back to Search Start Over

Propositional Linear Temporal Logic with Initial Validity Semantics.

Authors :
Giero, Mariusz
Source :
Formalized Mathematics. Dec2015, Vol. 23 Issue 4, p379-386. 8p.
Publication Year :
2015

Abstract

In the article [10] a formal system for Propositional Linear Temporal Logic (in short LTLB) with normal semantics is introduced. The language of this logic consists of 'until' operator in a very strict version. The very strict 'until' operator enables to express all other temporal operators. In this article we construct a formal system for LTLB with the initial semantics [12]. Initial semantics means that we define the validity of the formula in a model as satisfaction in the initial state of model while normal semantics means that we define the validity as satisfaction in all states of model. We prove the Deduction Theorem, and the soundness and completeness of the introduced formal system. We also prove some theorems to compare both formal systems, i.e., the one introduced in the article [10] and the one introduced in this article. Formal systems for temporal logics are applied in the verification of computer programs. In order to carry out the verification one has to derive an appropriate formula within a selected formal system. The formal systems introduced in [10] and in this article can be used to carry out such verifications in Mizar [4]. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14262630
Volume :
23
Issue :
4
Database :
Academic Search Index
Journal :
Formalized Mathematics
Publication Type :
Academic Journal
Accession number :
114190904
Full Text :
https://doi.org/10.1515/forma-2015-0030