Back to Search Start Over

De Novo Transcriptome Analysis of Two Seahorse Species (Hippocampus erectus and H. mohnikei) and the Development of Molecular Markers for Population Genetics.

Authors :
Lin, Qiang
Luo, Wei
Wan, Shiming
Gao, Zexia
Source :
PLoS ONE. 4/29/2016, Vol. 11 Issue 4, p1-19. 19p.
Publication Year :
2016

Abstract

Seahorse conservation has been performed utilizing various strategies for many decades, and the deeper understanding of genomic information is necessary to more efficiently protect the germplasm resources of seahorse species. However, little genetic information about seahorses currently exists in the public databases. In this study, high-throughput RNA sequencing for two seahorse species, Hippocampus erectus and H. mohnikei, was carried out, and de novo assembly generated 37,506 unigenes for H. erectus and 36,113 unigenes for H. mohnikei. Among them, 17,338 (46.23%) unigenes for H. erectus and 17,900 (49.57%) for H. mohnikei were successfully annotated based on the information available from the public databases. Through comparing the unigenes of two seahorse species, 7,802 candidate orthologous genes were identified and 5,268 genes among them could be annotated. In addition, gene ontology analysis of two species was similarly performed on biological processes, cellular components, and molecular functions. Twenty-four and twenty-one unigenes in H. erectus and H. mohnikei were annotated in the biosynthesis of unsaturated fatty acids pathways, and both seahorses lacked the Δ12 and Δ15 desaturases. Total of 8,992 and 9,116 SSR loci were obtained from H. erectus and H. mohnikei unigenes, respectively. Dozens of SSR were developed and then applied to assess the population genetic diversity, as well as cross-amplified in a related species, H. trimaculatus. The HO and HE values of the tested populations for H. erectus, H. mohnikei, and H. trimaculatus were medium. These resources would facilitate the conservation of the species through a better understanding of the genomics and comparative genome analysis within the Hippocampus genus. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
11
Issue :
4
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
114992335
Full Text :
https://doi.org/10.1371/journal.pone.0154096