Back to Search Start Over

A Six-Phase 24-Slot/10-Pole Permanent-Magnet Machine With Low Space Harmonics for Electric Vehicle Applications.

Authors :
Abdel-Khalik, Ayman S.
Ahmed, Shehab
Massoud, Ahmed M.
Source :
IEEE Transactions on Magnetics. Jun2016, Vol. 52 Issue 6, p1-10. 10p.
Publication Year :
2016

Abstract

This paper proposes a six-phase surface-mounted permanent-magnet machine with a 24-slot/10-pole fractional slot winding, which not only eliminates the air-gap flux subharmonics, but also minimizes the effect of slot harmonics, which highly affect both the core and magnet losses. The six-phase winding design also offers an improved drive train availability for electric vehicle applications due to its inherent high fault-tolerant capability. When compared with a three-phase design, the proposed winding offers approximately 3.5% improvement in torque density, a significant reduction in both the core and magnet losses, and an improved overall efficiency. The proposed winding is deduced based on the stator shifting concept of two 12-slot/10-pole stators with single tooth windings. The coil span of the resulting machine will be two slots, which stands as a compromise between single tooth and distributed windings. The concept of stator shifting is first presented, and then, a prototype machine is designed and simulated using the 2-D finite-element analysis to validate the proposed concept. A comparative study is also carried out to compare six-phase and three-phase designs with the same slot/pole combination and also with the 18-slot/10-pole combination, which was recently shown to be a competitive alternative. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189464
Volume :
52
Issue :
6
Database :
Academic Search Index
Journal :
IEEE Transactions on Magnetics
Publication Type :
Academic Journal
Accession number :
115559561
Full Text :
https://doi.org/10.1109/TMAG.2016.2535230