Back to Search Start Over

Anti-EBOV GP IgGs Lacking α1-3-Galactose and Neu5Gc Prolong Survival and Decrease Blood Viral Load in EBOV-Infected Guinea Pigs.

Authors :
Reynard, Olivier
Jacquot, Frédéric
Evanno, Gwénaëlle
Mai, Hoa Le
Salama, Apolline
Martinet, Bernard
Duvaux, Odile
Bach, Jean-Marie
Conchon, Sophie
Judor, Jean-Paul
Perota, Andrea
Lagutina, Irina
Duchi, Roberto
Lazzari, Giovanna
Le Berre, Ludmilla
Perreault, Hélène
Lheriteau, Elsa
Raoul, Hervé
Volchkov, Viktor
Galli, Cesare
Source :
PLoS ONE. 6/9/2016, Vol. 11 Issue 6, p1-16. 16p.
Publication Year :
2016

Abstract

Polyclonal xenogenic IgGs, although having been used in the prevention and cure of severe infectious diseases, are highly immunogenic, which may restrict their usage in new applications such as Ebola hemorrhagic fever. IgG glycans display powerful xenogeneic antigens in humans, for example α1–3 Galactose and the glycolyl form of neuraminic acid Neu5Gc, and IgGs deprived of these key sugar epitopes may represent an advantage for passive immunotherapy. In this paper, we explored whether low immunogenicity IgGs had a protective effect on a guinea pig model of Ebola virus (EBOV) infection. For this purpose, a double knock-out pig lacking α1–3 Galactose and Neu5Gc was immunized against virus-like particles displaying surface EBOV glycoprotein GP. Following purification from serum, hyper-immune polyclonal IgGs were obtained, exhibiting an anti-EBOV GP titer of 1:100,000 and a virus neutralizing titer of 1:100. Guinea pigs were injected intramuscularly with purified IgGs on day 0 and day 3 post-EBOV infection. Compared to control animals treated with IgGs from non-immunized double KO pigs, the anti-EBOV IgGs-treated animals exhibited a significantly prolonged survival and a decreased virus load in blood on day 3. The data obtained indicated that IgGs lacking α1–3 Galactose and Neu5Gc, two highly immunogenic epitopes in humans, have a protective effect upon EBOV infection. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
11
Issue :
6
Database :
Academic Search Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
116024664
Full Text :
https://doi.org/10.1371/journal.pone.0156775