Back to Search Start Over

The physical mechanism on the threshold voltage temperature stability improvement for GaN HEMTs with pre-fluorination argon treatment.

Authors :
Yun-Hsiang Wang
Liang, Yung C.
Samudra, Ganesh S.
Chih-Fang Huang
Wei-Hung Kuo
Guo-Qiang Lo
Source :
Applied Physics Letters. 6/6/2016, Vol. 108 Issue 23, p233507-1-233507-5. 5p. 1 Diagram, 5 Graphs.
Publication Year :
2016

Abstract

In this paper, a normally-off AlGaN/GaN MIS-HEMT with improved threshold voltage (VTH) thermal stability is reported with investigations on its physical mechanism. The normally-off operation of the device is achieved from novel short argon plasma treatment (APT) prior to the fluorine plasma treatment (FPT) on Al2O3 gate dielectrics. For the MIS-HEMT with FPT only, its VTH drops from 4.2V at room temperature to 0.5V at 200 °C. Alternatively, for the device with APT-then-FPT process, its VTH can retain at 2.5V at 200 °C due to the increased amount of deep-level traps that do not emit electrons at 200 °C. This thermally stable VTH makes this device suitable for high power applications. The depth profile of the F atoms in Al2O3, measured by the secondary ion mass spectroscopy, reveals a significant increase in the F concentration when APT is conducted prior to FPT. The X-ray photoelectron spectroscopy (XPS) analysis on the plasma-treated Al2O3 surfaces observes higher composition of Al-F bonds if APT was applied before FPT. The enhanced breaking of Al-O bonds due to Ar bombardment assisted in the increased incorporation of F radicals at the surface during the subsequent FPT process. The Schrödinger equation of Al2OxFy cells, with the same Al-F compositions as obtained from XPS, was solved by Gaussian 09 molecular simulations to extract electron state distribution as a function of energy. The simulation results show creation of the deeper trap states in the Al2O3 bandgap when APT is used before FPT. Finally, the trap distribution extracted from the simulations is verified by the gate-stress experimental characterization to confirm the physical mechanism described. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00036951
Volume :
108
Issue :
23
Database :
Academic Search Index
Journal :
Applied Physics Letters
Publication Type :
Academic Journal
Accession number :
116093658
Full Text :
https://doi.org/10.1063/1.4953573