Back to Search Start Over

Exits in order: How crowding affects particle lifetimes.

Authors :
Penington, Catherine J.
Baker, Ruth E.
Simpson, Matthew J.
Source :
Journal of Chemical Physics. 2016, Vol. 144 Issue 24, p1-7. 7p. 4 Graphs.
Publication Year :
2016

Abstract

Diffusive processes are often represented using stochastic random walk frameworks. The amount of time taken for an individual in a random walk to intersect with an absorbing boundary is a fundamental property that is often referred to as the particle lifetime, or the first passage time. The mean lifetime of particles in a random walk model of diffusion is related to the amount of time required for the diffusive process to reach a steady state. Mathematical analysis describing the mean lifetime of particles in a standard model of diffusion without crowding is well known. However, the lifetime of agents in a random walk with crowding has received much less attention. Since many applications of diffusion in biology and biophysics include crowding effects, here we study a discrete model of diffusion that incorporates crowding. Using simulations, we show that crowding has a dramatic effect on agent lifetimes, and we derive an approximate expression for the mean agent lifetime that includes crowding effects. Our expression matches simulation results very well, and highlights the importance of crowding effects that are sometimes overlooked. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
144
Issue :
24
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
116562001
Full Text :
https://doi.org/10.1063/1.4953913